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Throughout its lifecycle, an LLM incurs significantly higher carbon emissions
during inference than training. Inference requests vary in batch size, prompt
length, and token generation, while cloud providers deploy heterogeneous
GPU configurations to meet diverse service-level objectives. Unlike training,
inference exhibits lower and highly variable hardware utilization, making
equation-based carbon models unreliable. Existing network-based estimators
lack accuracy, as they fail to account for the distinct prefill and decode
phases, hardware-specific features, and realistic request distributions. We
propose LLMCO3, a graph neural network (GNN)-based model, to improve
the accuracy of LLM inference carbon footprint estimation by ~ 67% over
prior approaches. Source code is available at https://github.com/fuzhenxiao/
LLMCO2.

1 Introduction

Large language models (LLMs) are increasingly embedded in ev-
eryday applications such as web browsing and code generation,
yet their deployment incurs substantial carbon costs [7]. Inference
emissions can surpass those from training, with OpenAlI processing
over 270 million requests daily [5], each averaging 1.2K tokens [17].
Training GPT-4 required approximately 13 trillion tokens [16], and
each training epoch consumes 3x the FLOPs of a single inference [7].
Consequently, just 121 days of inference yields emissions equivalent
to one round of training. As LLM adoption grows [16], the time to
reach inference-training emission parity continues to shrink.

The total carbon footprint of LLM inference comprises operational
and embodied components [22]. Operational emissions stem from
energy consumed during runtime, while embodied emissions arise
from hardware manufacturing. In modern Al data centers, opera-
tional emissions account for up to 70% of total LLM-inference-related
carbon output [22]. Accurately quantifying operational emissions
under different latency and accuracy requirements [17] is essential
for transparent billing and promoting sustainable usage.

Despite this urgency, modeling tools for LLM inference operational
emissions remain limited. Users issue requests with varying batch
sizes, prompt lengths, and generated token counts, while cloud
providers rely on heterogeneous GPU deployments to meet diverse
latency and accuracy requirements. Prior efforts [14] measured
emissions on specific hardware platforms, but exhaustive profiling
across all configurations is infeasible. Equation-based models for
LLM training [7] fail to generalize to inference due to its lower and
more variable hardware utilization. While ML-based tools exist for
latency [11, 25] and energy [20] prediction on mobile devices, their
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application to LLM inference results in poor accuracy due to the

following limitations:

o Autoregressive phase unawareness: Existing tools, developed for
CNNs, do not distinguish between the compute-bound prefill and
memory-bound decode phases in LLMs [11, 20, 25], leading to
inaccurate predictions.

o Omission of hardware-specific factors: These models ignore critical
GPU characteristics such as peak compute throughput, memory
bandwidth, and network capacity, necessitating labor-intensive
profiling across platforms.

e Misrepresentation of real-world usage: Uniform sampling over-
looks realistic configurations, where typical cloud-based LLM
requests involve small batch sizes, medium-length prompts, and
limited token generation [12], thereby reducing relevance in prac-
tical scenarios.

We present LLMCOs, an estimator for accurately modeling the
operational carbon of LLM inferences. LLMCO; introduces a novel
graph representation that models each LLM layer’s kernels as a
graph, where nodes represent kernels and edges encode data de-
pendencies. Prefill and decode phases are represented separately,
with node features incorporating Roofline-based hardware-specific
metrics. To enhance generalization, we propose a targeted data
sampling strategy that prioritizes common request, LLM, and GPU
configurations. LLMCO; achieves ~ 67% higher prediction accuracy
compared to existing ML-based energy estimators across diverse
requests and hardware setups.

2 Background

LLM Carbon Footprint. The carbon footprint of LLM inference
comprises operational and embodied components [7]. Operational
emissions result from energy consumption during hardware execu-
tion, while embodied emissions reflect the carbon costs of hardware
fabrication. The latter can be estimated from total chip area using an-
alytical models [7]. This work focuses on modeling the operational
carbon footprint of LLM inference.

LLM Inference Serving. Cloud-based LLM inference is typically
managed by serving engines such as Sarathi [1] and vLLM [10],
which handle request reception, batching, scheduling, and response
generation. Consequently, the operational carbon footprint of LLM
inference comprises two components: the serving engine’s overhead
and the inference computation itself.

Autoregressive LLM Inference. As shown in Figure 1, LLM in-
ferences generate tokens autoregressively [17]. The initial iteration
processes all input tokens in parallel to produce the first output—this
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Fig. 1. An LLM autore-

gressive inference (a) HBM (OP: operation). (b) NVLink.

Fig. 2. The Roofline model.

is the prefill phase [17]. Attention contexts are buffered in the key-
value (KV) cache for subsequent iterations, where new tokens are
generated using only the latest token and the KV cache—this defines
the decode phase [17]. The prefill phase is compute-bound, domi-
nated by hardware computing throughput, while the decode phase
is memory-bound, constrained by KV cache access. This leads to
distinct profiles in latency, energy, and carbon emissions. Ignoring
this phase distinction or lacking sufficient training data significantly
degrades energy prediction accuracy.

Transformer Layer. Each transformer layer [21] includes a
masked multi-head attention (MHA) block and a feed-forward (FF)
module, surrounded by normalization layers. The MHA block com-
putes attention using query, key, and value kernels. Optimizations
such as Grouped-Query Attention [2] and Flash Attention [6] reduce
memory overhead by limiting key-value heads and fusing attention
computations. The FF module is a two-layer MLP.

Inference Parallelism. Tensor parallelism (TP) [3, 13] acceler-
ates large-model inference by splitting transformer weights and
KV caches across multiple GPUs. It enhances throughput at high
batch sizes and reduces latency by reduce-scatter and all-gather
operations [9]. However, TP incurs frequent blocking communica-
tion, necessitating high-bandwidth interconnects like NVLink. In
contrast, pipeline parallelism (PP) [13] partitions the model into
sequential stages, assigning each GPU a subset of layers and trans-
ferring activations through send and recv operations. PP offers a
better compute-to-communication ratio than TP but may suffer
from pipeline bubbles.

Roofline Model. The Roofline model [4] estimates GPU kernel
performance by incorporating peak compute throughput, mem-
ory and network bandwidth, and the kernel’s arithmetic inten-
sity—defined as total operations divided by data transferred. A ridge
point marks the transition between compute-bound and bandwidth-
bound regimes. A GPU with support for FP16 and INT8 under HBM
yield separate ridge points (Figure 2(a)), while NVLink contributes
another ridge point (Figure 2(b)). Kernels below the ridge point are
bandwidth-bound; those above are compute-bound. For example,
kernel Ky is compute-bound in FP16 but memory-bound in INTS.

Request Characterization. In public LLM serving platforms
such as Microsoft Azure, inference configurations (e.g., prompt
length, generated token count) exhibit non-uniform distributions.
Analysis of public Azure traces [12] shows that conversation re-
quests typically have long prompts, averaging 1.1K tokens (Fig-
ure 3(a)), with generated token counts averaging 145 tokens (Fig-
ure 3(b)). Coding requests exhibit even longer prompts, averaging
2K tokens (Figure 3(c)), but shorter generated token counts, aver-
aging only 28 tokens (Figure 3(d)). Major cloud providers employ
mixed continuous batching [1], resulting in variable batch sizes.
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Fig. 3. The request distribution.
Table 1. The comparison of LLMCO; against prior work.
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3  Related Work

We summarize the comparison between LLMCO; and prior meth-
ods in Table 1. LLMCarbon [7] estimates inference emissions using
an equation-based model, but lacks accuracy due to its inability to
capture variable hardware utilization. ML-based methods such as
nn-Meter [25], DeepEn [20], and NNLQP [11] predict latency or
energy for CNNs using neural networks, but treat inference as a
monolithic task—failing to differentiate between the compute-bound
prefill and memory-bound decode phases of autoregressive LLMs.
These approaches rely on architecture-specific features and exhaus-
tive sampling, yet omit essential hardware-level characteristics such
as GPU throughput, memory bandwidth, and network capacity, lim-
iting their generalizability across hardware platforms. Additionally,
they uniformly sample inference configurations, failing to capture
real-world patterns such as small batch sizes and medium-length
prompts. None of these models account for the energy overhead of
LLM serving engines. In contrast, LLMCO3 explicitly models pre-
fill & decode phases, incorporates hardware-specific features, em-
phasizes realistic request distribution, and includes serving engine
overhead—yielding significantly more accurate carbon footprint
estimates.

4 LLMCO2

We present LLMCO3, a regression model for accurately estimat-
ing the operational carbon footprint of LLM inference, comprising
both inference and serving engine carbon emissions. For inference
operational energy, we introduce a graph-based representation of
transformer layers executed across one or more GPUs, incorpo-
rating LLM architectural features and hardware-specific Roofline
performance metrics for both prefill and decode phases. A 2-GNN
architecture is employed: the first GNN predicts prefill energy, and
the second estimates total inference energy. To construct training,
validation, and test datasets, we propose a targeted energy data sam-
pling strategy that emphasizes real-world request patterns, model
architectures, and GPU configurations in cloud deployments. For
serving engine operational energy, we develop an equation-based
model to estimate overhead per batch of LLM inferences. The total
operational energy Eji,)—the sum of inference and serving engine
energy—is converted to carbon emissions using Eyota1 - PUE - CI [7],
where PUE denotes power usage effectiveness and CI represents
the data center’s carbon intensity.
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Fig. 4. The graph representation of an LLM layer.
4.1

Graph Representation. We model each transformer layer as a
directed acyclic graph of compute kernels, denoted as G = (V, &),
where YV is the set of nodes and & is the set of edges. As shown in
Figure 4, each node v € V corresponds to a compute kernel (e.g.,
fusearten or Qproj), and each edge e € & captures the flow of data
between kernels. Each node is annotated with two key attributes: (1)
aone-hot encoded kernel type that specifies the operation performed,
and (2) a dimension vector describing the input, weight, and output
tensor shapes. To account for the distinct characteristics of the
prefill and decode phases in autoregressive inference, each node is
assigned two separate feature sets—one for each phase. Each feature
set concatenates the following components:

o Operation Number indicates the total number of operations per-
formed by the kernel. This is computed separately for the prefill
and decode phases using the LLM analysis tool LLM-Viewer [24].

e Memory Size means the memory accessed by the kernel. Prefill
and decode memory footprints are also extracted via LLM-Viewer.

o Network Transfer represents the volume of data transferred over
the GPU network interface. For all-reduce kernels operating on
an n X n matrix distributed across | GPUs, the transfer size S,j; is

Inference Operational Energy

computed as "TZ -(I-1)-DS, where DS denotes the byte size of each
matrix element (e.g., DS = 2 for FP16). For pipeline parallelism
involving I GPUs and batch size B, the transferred data size Spipe
is(l-1)-B-n-DS.

o Roofline Performance quantifies the kernel’s performance based on
Roofline model analysis. For non-all-reduce kernels, the memory-
related arithmetic intensity (MAI) is defined as the ratio of to-
tal operations to memory accessed. For all-reduce kernels, the
network-related arithmetic intensity (NAI) is the ratio of to-
tal operations to network transfer. The memory and network
ridge points (MRP and NRP) are computed as Thmax/BWnax and
Thmax/NETnax, respectively, where Thpax is the GPU’s peak
throughput, BWnay is its maximal memory bandwidth, and NETyax
is its maximal network bandwidth. The Roofline performance of
a kernel is defined as:

— For non-all-reduce kernels: min(Thyay, BWiax - MAI),

— For all-reduce kernels: min(Thpax, NETmax - NAI).

2-GNN Predictor. As shown in Figure 5, LLMCO; utilizes a
dual-GNN architecture to capture the distinct energy characteristics
of the prefill and decode phases in LLM inference. The first GNN
predicts prefill energy, and the second estimates the total inference
energy. Each GNN consists of multiple graph convolutional layers

(e.g., GraphSAGE [8]) to extract graph-level embeddings, which

are concatenated with global features comprising both inference

and model configurations. Inference features include batch size,
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prompt length, token count, total FLOPs, memory access volume,
and network transfer size. LLM configuration features encompass
quantization bitwidth, hidden size, intermediate size, head count,
and layer count. These combined features are passed through linear
layers to produce energy predictions. The predicted prefill energy is
appended to the global feature vector and fed into the second GNN
to facilitate accurate estimation of total operational energy.
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Fig. 7. The batch size distribution (LAM-8b on A100).

Targeted Energy Data Sampling. To build training, valida-
tion, and test datasets, we adopt a targeted sampling strategy that
prioritizes impactful configurations across the joint space of LLM
architectures, inference requests, and hardware platforms, rather
than relying on random sampling (Figure 6). We first sample 50K
points from AX T X H, where A includes LLM variants (head count,
layer count, intermediate size, quantization, hidden size), J captures
real-world inference request distributions, and H covers diverse
GPU setups. The serving engine batches requests of varying sizes;
for example, coding tasks typically have smaller batches than con-
versation tasks (Figures 7(a) and 7(b)). We assess sampling quality by
training GNN predictors and refining samples through fine-grained
selection around high-error regions, iterating until achieving the
target accuracy.

4.2 Serving Engine Operational Energy

The primary functions of a serving engine—request reception, batch-
ing, scheduling, and dispatching batches to the LLM—are not com-
putationally intensive [1, 10]. As a result, the operational energy of
the serving engine is dominated by system idle power, including
CPU, DRAM, and other peripheral components. We estimate the
serving engine’s operational energy Esery as Pigle - t + Eform, Where
Pigle is system idle power, t means batch formation latency, and
Ef¢orm denotes dynamic energy consumed during batch formation.

5 Experimental methodology

LLMs. We evaluated LLMCO; on three LLMs: meta-llama/Llama-
2-7b-hf (LAM-7b) [19], internlm/internlm-20b (INT-20b) [23], and
meta-llama/Llama-2-70b-hf (LAM-70b) [19], covering different model
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Table 2. The configuration of GPU servers.

server throughput (TOPs/s) | memory | network | node | area | tech
FP16 INTS (GB/s) | (GB/s) | size | (mm?) | (nm)
A100 [[ 624 | 1248 | 2039 [ 600 [ 8 [ 826 [ 7 |
DGX [ 7nm 2X Xeon Platinum 8480C, 2TB DRAM DDR5 ]
H100 [[ 1979 ] 3958 [ 3430 [ 900 [ 8 [ 814 [ 5 |
DGX || 7nm 2X AMD Rome 7742, 2TB DRAM DDR4 |

Table 3. The MAPE comparison (The lower, the better).

[ scheme H LAM-7b [ INT-20b [ LAM-70b [ mean ]

LLMCarbon 97.2% 115.6% 321.9% | 178.2%
DeepEn 36.2% 42.3% 48.6% 42.4%
NNLQP 32.4% 38.6% 49.3% 40.1%

LLMCO, 12.3% 14.6% 19.8% 15.6%

scales. Each model is characterized by quantization bitwidth (b), hid-
den size (h), intermediate size (i), head count (c), and layer count ([).
The LLM details are shown as:

o LAM-7b: b =16, h = 4096, i = 11008, ¢ = 32, | = 32

e INT-20b: b = 16, h = 5120, i = 13824, ¢ = 40, [ = 60

o LAM-70b: b = 16, h = 8192, i = 28672, ¢ = 64, | = 80

GPUs. LLM inferences were performed on NVIDIA DGX systems
(details in Table 2), each comprising 8 GPUs interconnected via
NVLink, supporting tensor parallelism degrees of 1, 2, 4, and 8. Both
A100 and H100 GPUs were used, representing typical hardware in
commercial cloud-based LLM deployments. The A100 DGX system
includes two Intel Xeon Platinum 8480C CPUs and 2TB of DDR5
DRAM, while the H100 DGX system is configured with two AMD
EPYC 7742 CPUs and 2TB of DDR4 DRAM.

Request Traces. Public Azure LLM serving traces [12] were used
to generate inference requests, encompassing two distinct traces:
one for chat and the other for code completion.

Serving Engine. For evaluation, we adopt Sarathi [1], a state-of-
the-art LLM inference serving engine that offers a superior through-
put-latency trade-off compared to alternatives such as vLLM [10].

Measurement. We used the Nvidia Management Library [15]
and the RAPL interface to measure the energy consumption of
LLM inferences on the target GPUs and CPUs (including DRAMs),
respectively. Each inference was executed 5 times, and the average
value was recorded as the ground truth.

Dataset Construction. We generated LLM inference requests
based on real-world request traces and submitted them to the serving
engine deployed on the GPU systems listed in Table 2. The batch size
distribution made by the serving engine is shown in Figure 7. The
dimensions of tensor parallelism and pipeline parallelism for each
batch can be 1, 2, and 4. Using our targeted energy data sampling, we
constructed training and validation datasets using all three LLMs. In
contrast, the training and validation datasets for baseline schemes
were built using random sampling. The dataset sizes were 8K for
training, 1K for validation, and 1K for testing.

Implementation. Each GNN in LLMCO3; comprises two Graph-
SAGE layers [8] followed by two linear layers. LLMCO is imple-
mented using PyG [18] and trained on a Tesla L4 GPU using the
Adam optimizer with a learning rate of 0.01 and a batch size of 64.

Evaluation Metrics. We assess prediction accuracy using Mean

Absolute Percentage Error (MAPE) and Error Bound Accuracy (EBA(J)).

MAPE measures the average absolute percentage deviation between
predicted and actual energy values, where lower values indicate
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Table 4. The EBA comparison (The higher, the better).

[ EBA(30%) EBA(10%) |
[LAM-7b[INT-20b][LAM-70b] mean [[LAM-7b[INT-20b[LAM-70b[ mean |
LLMCarbon|| 8.2% 5.4% 12.3% |8.63% 2.1% 1.6% 2.2% 1.97%
DeepEn 48.3% | 52.3% 56.6% |52.4%|| 38.2% | 41.6% 43.2% 41%
NNLQP 52.4% | 61.6% 48.3% |54.1%|| 39.6% | 43.5% 40.1% |41.7%
LLMCO, 79.5% | 81.3% 84.2% |81.7%|| 62.3% | 75.7% 67.8% |68.6%

’ scheme

better accuracy. EBA(S) denotes the proportion of predictions falling

within a §% error margin of the ground truth, with higher values

indicating greater precision.
Baseline Schemes. We compare LLMCO; against followings.

e LLMCarbon [7] uses a FLOP-counting equation-based model to
estimate carbon footprint, without accounting for hardware vari-
ability or execution phases.

e DeepEn [20] collects energy samples across GPUs and trains a
random forest model for kernel-level energy prediction.

e NNLQP [11] adopts a GNN-based approach to model energy con-
sumption by representing each model layer as a graph.

However, they do not distinguish prefilling from decoding, incorpo-

rate hardware-related features, or prioritize sampling of prevalent

configurations in cloud-based LLM serving.

6 Validation and Analysis
6.1 LLM Inference Operational Energy Predictor

MAPE. Table 3 compares the Mean Absolute Percentage Error
(MAPE) of LLMCO; with baseline schemes across different LLMs.
On average, LLMCO; achieves the lowest MAPE values, demon-
strating superior prediction accuracy. LLMCarbon, relying solely
on FLOP counts, disregards memory accesses within transformer
layers and essential hardware-specific metrics such as GPU mem-
ory and network bandwidth, resulting in the highest MAPE across
all LLMs. A MAPE greater than 100% indicates that the prediction
errors are significantly larger than the ground truth values. The
ML-based predictors, DeepEn and NNLQP, exhibit similar average
MAPE values. However, DeepEn slightly outperforms NNLQP on
LAM-70b due to its random forest model’s robustness with smaller
training datasets. Overall, LLMCO3 reduces the average MAPE by
63.2% compared to DeepEn and 61% compared to NNLQP by (1)
separately modeling prefill and decode phases, (2) incorporating
kernel-level Roofline performance, and (3) leveraging energy data
derived from real-world serving traces.

EBA. Table 4 reports the Error Bound Accuracy (EBA) at 30%
and 10% error margins for various energy predictors. LLMCO; con-
sistently achieves the highest EBA values across all error bounds
and LLMs. In contrast, LLMCarbon records the lowest EBA values,
as it neglects memory accesses and network data transfers, result-
ing in substantial errors, particularly for LLMs with long decode
phases and those constrained by all-reduce kernels (e.g., LAM-70b).
Although DeepEn and NNLQP display comparable MAPE values,
NNLQP attains higher EBA values at smaller error bounds, ben-
efiting from its GNN model’s capacity to learn finer-grained en-
ergy patterns when sufficient training data is available. Overall,
LLMCO3 improves the average EBA(10%) by 67.3% and 64.5% over
DeepEn and NNLQP, respectively.
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Table 5. The ablation study (EBA(10%)) of LLMCOx.

[ component H LAM-7b [ INT-20b [ LAM-70b [ mean ]
+prefill/decode 51.6% 58.4% 55.1% 55.03%
+Roofline 56.2% 66.3% 61.2% 61.23%
+targeted sampling 62.3% 75.7% 67.8% 68.6%

Ablation Study. We performed ablation studies on EBA(10%) to
assess the contribution of each component in LLMCO, as shown in
Table 5. Separating node features for the prefill and decode phases
increases EBA(10%) by 32% compared to NNLQP. This separation is
particularly effective in real-world LLM serving clouds, where most
requests involve medium-length prompts and limited token genera-
tion, causing significant prediction errors when the two phases are
combined. Incorporating Roofline performance as a node feature
further improves LLMCO32’s EBA(10%) by 11.3%, as it enables effec-
tive knowledge transfer between different GPU servers. Finally, the
targeted energy data sampling strategy raises LLMCO2’s EBA(10%)
to 164.5% of NNLQP, as training with data distributions that reflect
typical LLM inference configurations enhances its accuracy on test
datasets with similar prompt lengths and token distributions.

6.2 Serving Engine Energy Estimator

On average, the EBA(10%) of serving engine energy per batch is
89.2% for the conversation trace and 98.8% for the coding trace. In
the conversation trace, request arrival intervals are short, result-
ing in an average batch formation latency that is only 11.7% of the
LLM inference latency, with a median value of 6.4%. Consequently,
serving engine energy is dominated by CPU batch formation en-
ergy, which LLMCO; approximates using a fixed value, leading
to higher modeling errors. In contrast, the coding trace exhibits
larger request arrival intervals, with the average and median batch
formation latency reaching 13X and 11X that of LLM inferences,
respectively. Here, serving engine energy is primarily driven by
system idle energy, which is more predictable, resulting in much
higher accuracy.

7 User Case Studies

Carbon Emission Speed Comparison. LLM training requires
extensive GPU usage at high throughput over prolonged periods.
For instance, LAM-70b training involves 800 A100 GPUs operat-
ing at ~50% peak throughput for three months [19]. In contrast, a
typical LAM-70b inference employs four A100 GPUs at 10%-40%
throughput for 2-4 seconds. Figure 8 presents the normalized carbon
emission per GPU per second for LAM-70b training and inference,
relative to the training baseline. The embodied carbon per GPU per
second remains constant across configurations due to the uniform
use of four A100 GPUs. For conversation requests, characterized
by an average prompt length of 1.1K tokens, 145 generated tokens,
and a batch size of 48, the prefill phase (conv-p) achieves slightly
reduced GPU utilization, lowering operational carbon emissions
per second by 7% compared to training. However, the decode phase
(conv-d), with significantly lower GPU utilization, reduces opera-
tional carbon emissions per second by 74%. Coding requests, with
an average prompt length of 2K tokens, 27 generated tokens, and
a batch size of 7, exhibit substantially lower GPU utilization. Com-
pared to conversation requests, the prefill phase (code-p) reduces
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operational carbon emissions per second by 75%, while the decode
phase (code-d) reduces them by 48%. Unlike training, the embodied
carbon overhead dominates the prefill phase of coding inferences
and both phases of both coding and conversation inferences.

Inference w Various TP Settings. We observe that increasing
the number of GPUs does not always accelerate LLM inference, par-
ticularly for coding requests characterized by small batch sizes and
short prompts. Consequently, employing more GPUs than necessary
can be unsustainable. Figure 9 illustrates the carbon emission com-
parison for LAM-7b inferences across varying tensor parallelism
(TP) settings, normalized to the carbon emission of coding infer-
ences with TP=1. For conversation requests with larger batch sizes
and longer prompts, increasing the TP setting reduces inference
latency and operational energy per GPU, as the workload per GPU
decreases. Conversely, for coding requests with smaller batch sizes
and shorter prompts, adding more GPUs increases inference latency
and operational energy per GPU due to the communication over-
head of all-reduce kernels. As a result, the total carbon footprint
decreases significantly for conversation inferences with higher TP
settings but increases substantially for coding inferences.

8 Conclusion

LLM inference produces a larger carbon footprint than training,
necessitating accurate estimation tools for both users and cloud
providers. Existing models fall short due to their inability to capture
LLM autoregressive behaviors, hardware-specific features, and real-
world request configuration distribution. We presented LLMCO2,
a GNN-based model to address these challenges, offering ~ 67%
improved accuracy in predicting the carbon footprint of LLM infer-
ences compared to prior methods.
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