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Cloud providers deploy massive fleets of GPUs to meet the growing demand
for machine learning inference, but these fleets come with a steep carbon
cost—manufacturing 350,000 NVIDIA A100 GPUs emits an estimated 7.54
million kgCO2. Prior efforts have largely focused on increasing GPU uti-
lization, under the assumption that higher utilization translates to better
carbon efficiency. However, we find the notion that higher GPU utilization
makes inference serving systems inherently carbon efficient to be a fallacy.
Through our characterization study, focusing on the carbon efficiency of
GPU spatial sharing, we find that optimizing for resource utilization does
not always achieve carbon efficiency; the outcome depends on the specific
models co-located on a GPU. This tradeoff between utilization and carbon
efficiency is shaped by multiple drivers, including fluctuations in the under-
lying energy sources, request rates, and model input/output requirements.
Thus, improving the sustainability of inference serving demands a shift
from utilization-focused designs to carbon-aware GPU sharing and runtime
policies. To realize our vision, we (1) introduce an efficient and accurate
preliminary methodology to estimate GPU power consumption under con-
current model execution, and (2) show that frequency tuning in shared GPUs
can be used as a lever to improve carbon efficiency, but must be tailored to
the combination of models sharing a GPU and key carbon-efficiency drivers,
brought up by our characterization study. We conclude by proposing new
avenues for research as next steps and a call to action for the hardware
community to improve the long-term sustainability of ML inference serving.

CCS Concepts: « Computer systems organization — Cloud computing;
« Hardware — Power estimation and optimization; Impact on the
environment; « Computing methodologies — Machine learning; -
Software and its engineering — Cloud computing.

Additional Key Words and Phrases: GPU Sharing, Sustainability

1 INTRODUCTION

The pursuit to support the ever-growing machine learning (ML) in-
ference workloads has pushed cloud providers to procure and build
large infrastructure fleets [6-8, 39]. Studies suggest that such infras-
tructure has severe carbon costs: manufacturing 350,000 NVIDIA
A100s as announced by Meta [39] emits at least 7.54 million kgCO2
(21.56 kgCO2 per GPU) [22]. Prior efforts to improve the sustain-
ability of inference serving have largely focused on increasing GPU
utilization (§ 2), under the assumption that higher utilization trans-
lates to better carbon efficiency. In this paper, we question whether
this assumption always holds true.

We conduct an extensive characterization study (§ 3) to answer
two fundamental questions: (a) does improving GPU utilization
through sharing mechanisms always improve carbon efficiency, and
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Fig. 1. SDXL (image generation) and Whisper (speech-to-text) serving
inference requests on one A100 GPU via NVIDIA’s MIG GPU sharing
mechanism (spatial sharing) versus dedicating a GPU per model (no
sharing). Improving GPU utilization via spatial sharing does not always

improve carbon efficiency.

(b) what factors comprising inference workloads drive the carbon
efficiency of shared GPUs?

Through this characterization, we find that optimizing GPU uti-
lization does not always improve carbon efficiency (Fig. 1), rendering
this commonly held assumption a fallacy; the outcome depends on
the combination of models co-located on the GPUs. Maximizing
GPU utilization for some combinations achieves a significant reduc-
tion in both operational (up to 40%) and embodied emissions (up
to 62%). For other model combinations, maximizing utilization can
degrade carbon efficiency, mainly because the increase in latency
results in increased operational emissions. We find that this trade-
off between utilization and carbon efficiency is shaped by multiple
factors or carbon-efficiency drivers, including fluctuations in the
underlying energy sources, request rates, and model input/output
requirements.

Based on these observations, we argue that improving the sustain-
ability of inference serving demands a shift from utilization-focused
designs to carbon-aware GPU sharing and runtime policies. We envi-
sion a carbon-aware inference serving system that bases its resource
management decisions on the key drivers we find and develops tar-
geted policies to improve carbon efficiency. To realize our vision,
we (1) introduce an efficient and accurate preliminary methodology
to estimate the amount of power drawn by a GPU when concurrently
serving multiple models, and (2) show that frequency tuning in shared
GPUs can be used as a lever to improve carbon efficiency, but must
be tailored to the combination of models sharing a GPU and key
carbon-efficiency drivers, brought up by our characterization study.
Estimating GPU power under concurrent model execution.
Accounting for the key carbon-efficiency drivers requires under-
standing how they impact the carbon emissions for a specific set
of models. Operational and embodied emissions depend on infer-
ence latency; operational emissions also depend on energy and thus
the GPU power draw [22]. Hence, to design new carbon-centric
policies, we must understand how the concurrent execution of a
specific set of models impacts GPU power draw and inference la-
tency. Previous works have studied the impact of spatial sharing on
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latency [11, 15, 23, 33, 60], but to the best of our knowledge, none
have studied how sharing GPUs impacts power draw. While we
could use fine-grained power models proposed by the architecture
community [29, 31], applying them to shared GPU environments
requires expensive profiling to collect hardware counters for every
feasible combination of models that might share a GPU. This is pro-
hibitive because of (1) the rapid pace at which the ML community
generates new models, and (2) the combinatorially large space of
potential model combinations. Hence, we propose a preliminary
methodology that uses analytical models and high-level job profiles
to efficiently and accurately estimate the amount of power drawn by
a GPU when concurrently serving models. With <2 minutes of offline
profiling, our preliminary results show that we can estimate a GPU’s
power draw when concurrently serving a set of models with just
15% error.

Frequency tuning for shared GPUs. We then explore the poten-
tial of frequency tuning as a lever to further reduce carbon emissions
in shared GPU settings. Frequency tuning is a popular mechanism
to reduce GPU energy consumption [28, 44, 51-53, 59, 69, 73], how-
ever, it has only been explored assuming a single task executes on
the GPU. As tuning the frequency of shared GPUs inflates latency,
carbon emissions and violations of Service Level Objectives (SLOs)
may increase. However, we find that by tuning the frequency of
shared GPUs to the specific set of co-located models and dynamic
behavior of the key carbon-efficiency drivers, we can improve car-
bon efficiency by up to 1.43x while still meeting the latency SLOs of
inference serving workloads. Thus, developing new resource man-
agement policies that intelligently coordinate frequency tuning and
spatial sharing is essential for improving the carbon efficiency of
inference serving workloads.

In this paper, we make the following contributions:

o By studying the relationship between resource utilization and
carbon efficiency, we uncover the utilization fallacy — the flawed
assumption that maximizing GPU utilization inherently leads
to carbon-efficient resource management decisions.

e We study the impact of various aspects of inference workloads,
including load, energy source, and model input/output require-
ments, to uncover the real drivers of its carbon efficiency.

e We propose a preliminary methodology to efficiently yet ac-
curately estimate GPU power consumption during concurrent
model serving.

o We find that tuning the frequency of shared GPUs to the set of
co-located models and key carbon-efficiency drivers can greatly
reduce carbon emissions.

o Finally, we outline promising future research avenues and call on
the hardware community to prioritize architecture innovations
that enhance the sustainability of ML inference serving.

2 BACKGROUND & RELATED WORK
2.1 GPU Sharing Mechanisms

GPU vendors offer hardware-supported concurrency mechanisms
to share GPUs. NVIDIA offers three process-level mechanisms: time
multiplexing (TM), multi process service (MPS), and multi-instance
GPU (MIG). TM shares a GPU by switching between processes in a
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round-robin fashion, giving each process exclusive access to com-
pute resources during its time quantum. MPS spatially shares the
GPU to concurrently execute kernels from multiple processes at
once [43], however, it only isolates the compute units between pro-
cesses; the memory subsystem (L2 cache, HBM memory) is shared.
To enable interference-free spatial sharing, modern NVIDIA GPUs
offer MIG, which isolates compute and memory resources by expos-
ing independent GPU slices on a single physical GPU [40].

2.2 Previous Related Work

We describe related work in GPU sharing, frequency scaling, and
GPU power modeling. To our knowledge, we are the first to study
(1) the implications of spatially sharing GPUs on the carbon emis-
sions of inference serving workloads, (2) the efficacy in tuning the
frequency of shared GPUs to reduce carbon emissions, and (3) how
to efficiently estimate GPU power under concurrent execution.
GPU sharing. Several works use NVIDIA’s concurrency mecha-
nisms. Those using TM [13, 21, 25, 44, 49, 56, 64, 66, 67, 70] face
poor utilization as only a single task that cannot fully utilize the
GPU executes at once (Fig. 1, left plot red bar). Inference serving
systems using MPS [9, 12, 15, 16, 55, 61, 72] for spatial sharing do
not account for MPS’s interference when placing jobs together (e.g.,
Instalnfer simply bin packs MPS GPUs until it saturates GPU mem-
ory [61]). Other works leveraging MIG [30, 33, 34, 62, 63, 71] use
simple carbon-agnostic placement policies to bin-pack GPUs; we
show in § 3 that placing "incompatible” models together can increase
carbon emissions compared to dedicating a GPU per model.

Other works deploy GPU runtimes that manually schedule com-

patible kernels to avoid interference [4, 11, 23, 54, 57, 60, 68] or en-
able concurrent model execution via operation fusion [17, 26, 57, 74].
However, these systems (a) assume strict job prioritization [23, 60],
(b) require cooperation across tenants and cumbersome control-
plane operations to construct super kernels [17, 26, 57, 74], and/or
(c) require expensive profiling [4, 11, 23, 27, 54, 57, 60, 68]. Crucially,
none examine the carbon impact of sharing GPUs or the potential of
tuning the frequency of shared GPUs to improve carbon efficiency.
GPU frequency scaling. All recent works that scale GPU fre-
quency to reduce power draw assume the GPU is not spatially
shared [28, 44, 51-53, 59, 69, 73]. Moreover, these works do not
account for the carbon intensity of the energy source when making
scaling decisions. We show in § 4.2 that scaling frequency while
spatially sharing GPUs depends on (1) the energy source’s carbon
intensity, and (2) the number and set of co-located models.
GPU power modeling. Previous works that estimate GPU power
draw rely on expensive profiling of low-level hardware usage [3, 5,
18, 24, 29, 31, 36, 58, 65]. Leveraging these works in shared GPU en-
vironments requires profiling every feasible combination of models
to obtain the input data (e.g., hardware usage) needed for the re-
spective modeling technique. This is prohibitive because of the pace
at which new models are being introduced and the combinatorially
large space of potential model combinations.

3 CHARACTERIZATION

In this section, we study the tradeoff between latency and carbon
efficiency with and without sharing (Q1), analyze if spatial sharing
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always reduces emissions (Q2), and study the impact of inference
workload characteristics on carbon efficiency (Q3).

Methodology. We compare the carbon emissions and per-request
latency of serving models concurrently on a single GPU versus a
GPU per model. We use four popular models from MLPerf’s Datacen-
ter Inference Benchmark [42]: SDXL (image generation), MobileNet
(MNet, image classification), GPT-J-6B (GPT, text summarization),
and Whisper (Whis, speech-to-text). Model sets have up to three
models; for a fair comparison, each model serves the same number
of requests with and without sharing (roughly five minutes worth).
Unless noted otherwise, requests arrive in a closed-loop pattern,
evaluating the model under steady-state peak load [51, 60, 67]; we
study other patterns/loads in Q3.

We conduct our study on an NVIDIA A100 GPU using MIG for
spatial sharing. We leave exploring the carbon efficiency with other
spatial sharing mechanisms (e.g., MPS) as future work. For sets with
two models, we allocate the larger model 4/7 of the GPU (MIG
configures GPUs into sevenths[41]) and the other 3/7; for sets of
three, we allocate the largest model 3/7 and the other two 2/7. This
simple MIG sizing policy suffices for our study; optimizing MIG
allocations for improved carbon efficiency is left for future work.
Modeling carbon emissions. To estimate the carbon emissions
of a workload, we leverage ACT [22]’s analytical models. We use
their customer-based carbon-accounting methodology to estimate
emissions, where carbon is attributed only when a user is using
the device. Formally, the net emissions of serving a workload of
inference requests are:

Cr=Cop+Cg (1)

where Cp and Cg are the operational and embodied emissions to
serve the workload, respectively.

We model operational emissions (Cp) based on the carbon inten-
sity (CI) of the grid’s energy source and the net energy (E) consumed
by the GPU(s) while serving a workload (energy is the total amount
of GPU power drawn P over the workload duration). Formally,

Co:CIxE:CIx/Pdt 2)
We observe the energy consumption of each GPU used to serve
the requests of a workload using the NVIDIA Management Library
(NVML) [47], sampled at coarse granularity (1Hz) to mitigate energy
consumption alterations due to sampling. We use gas as the default
energy source, which has a carbon intensity of approximately 490
gCO2/kWh [22]. Due to the high carbon intensity of gas, opera-
tional emissions tend to dominate net emissions; however, in Q3 we
explore how different energy sources impact the efficacy of GPU
sharing in reducing net emissions.

We model the embodied carbon footprint of manufacturing an
A100 GPU (Cypy) by accounting for its processor chip area and mem-
ory capacity from the GPU’s datasheet [1]. As we are only interested
in the embodied footprint of manufacturing the GPU itself, we do
not consider other server components (e.g., CPU, SSD) in our cal-
culations. Our estimations yield that manufacturing a single A100
PCle 40GB GPU emits 21.56 kgCO2. We note that the ACT model
does not account for the embodied footprint of the power delivery
network, printed wiring board, or GPU cooling (e.g., heat sink), all of
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Fig. 2. Spatial sharing (blue) can reduce embodied and operational
emissions without significantly degrading inference latency compared
to dedicating a GPU per model (red). Data for 3 model sets (one per
column). See § 3 Q1.
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Fig. 3. Sharing GPUs can lead to increased net carbon emissions com-
pared to dedicating a GPU per model. See § 3 Q2.

which would increase our estimated carbon footprint. Nonetheless,
we find that even if we double or quadruple the embodied footprint
estimation, our takeaways and findings hold.

The ACT methodology attributes the embodied carbon emissions
of a workload by the ratio between the workload’s execution time
(T) and the GPU’s lifetime (LT). Therefore, the embodied footprint
for serving a workload of inference requests is given by:

T
Cg = T X Cpm (3)
In this work, we assume a total GPU lifetime of 5 years, typical of
datacenter components [22, 50].

.
Q1. What is the tradeoff between latency and carbon emissions

when concurrently executing multiple inference jobs on a GPU?
\ J

Fig. 2 presents the inference latency and carbon footprint for three

sets of models with and without spatial sharing. Across model sets,
spatial sharing slightly increases latency compared to dedicating a
GPU per model: in set 2, Whisper and GPT’s latency increases by
1.27x% and 1.14X, respectively. However, spatial sharing still meets
each model’s SLO (5x the latency of a single request running in
isolation [19, 35, 53, 59]). Meanwhile, it reduces the operational
emissions by 28% on average (up to 40%) and embodied emissions
by 52% on average (up to 62%). While dedicating a model per GPU
reduces inference latency, the GPU-hours spent serving the same
set of models grow (GPUs allocated to the set doubles or triples),
thereby increasing the embodied carbon footprint.
Takeaway #1: Spatial sharing offers an opportunity to reduce the
operational and embodied carbon footprint of inference serving work-
loads, albeit it must be leveraged carefully to ensure SLOs are met, as
it increases inference latency.

Q2. While spatial sharing always improves GPU utilization, does it
always reduce carbon emissions?
-

Volume 5 Issue 2, July 2025



3 No Sharing I Sharing

O ~ 1000
o8
< 500 .
= [0 m m
20 40 60 80 100
Load (%)

Fig. 4. Comparison of the total carbon emissions with and without
sharing as load fluctuates. The load impacts spatial sharing’s carbon
efficiency versus no sharing. Data for SDXL/Whisper. See § 3 Q3.
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Fig. 5. Comparison of the operational, embodied, and net carbon emis-
sions with and without GPU sharing under different energy sources.

The energy source impacts spatial sharing’s carbon efficiency com-
pared to no sharing. Data for SDXL/Whisper. § 3 Q3.

With the aim of improving carbon efficiency, we revisit and criti-

cally examine the premise underlying prior GPU sharing approaches
— underutilized GPUs should be shared across models, provided their
latency needs are satisfied. Fig. 3 details the inference latency and
carbon footprint for three new model sets. All models continue to
meet their SLOs. However, across the three model sets where each
model individually has poor GPU utilization (Fig. 1, left plot red bar),
spatial sharing increases operational emissions by 15% on average.
SDXL'’s inference latency increases by 1.6x under spatial sharing, a
significantly larger increase than the model sets in Fig. 2. Hence, the
total time to serve all the requests in the workload grows by 1.6X,
increasing the overall GPU energy consumption and operational
emissions. Thus, the carbon efficiency of spatial sharing depends
heavily on the set of models co-located on a GPU.
Takeaway #2: The notion that higher GPU utilization is inherently
sustainable is a fallacy. Utilization-centered resource management
policies do not always reduce emissions: placing certain models together
trades off reducing embodied emissions versus increasing operational
emissions. We need new carbon-centric policies to ensure concurrent
execution does not inflate carbon emissions.

Q3. What factors drive the carbon efficiency for inference serving
workloads executing on shared GPUs?

Given that sharing is not always carbon-efficient (Q2), we next
analyze how workload factors—load, energy sources, and input/out-
put requirements—drive the carbon efficiency for inference serving
workloads executing on shared GPUs.

Impact of load. Our experiments in Q2 evaluated the model sets
under high load. We study how changing load drives carbon effi-
ciency with the model set SDXL/Whisper, used in Q2 (findings hold
for the other model sets). We scale each model’s load (requests per
second) as a percentage of the maximum throughput it can support,
arriving in a Poisson arrival pattern. The efficacy of using GPU
sharing to reduce net carbon emissions varies depending on the
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sharing’s efficacy in reducing emissions. See § 3 Q3.

load (Fig. 4). At higher loads (>70%), concurrent execution increases
emissions by 1.2X, but at lower loads, it reduces emissions by 1.41x
on average (1.73X max). At low loads, spatial sharing increases
workload completion time by just 5%, but greatly reduces total GPU
power draw (1.54X on average). This is because without sharing, an
extra GPU unnecessarily draws a static 40-50W while waiting for
requests, increasing total power draw and operational emissions.
At high load, isolated execution increases the total power drawn
by 1.2X, but reduces workload completion time by 1.33x (Fig. 3),
lowering overall operational emissions.

Takeaway #3: Load is a key driver of the carbon efficiency of inference
serving workloads spatially sharing a GPU. For the same model set, at
high load, sharing can increase net emissions by inflating operational
emissions despite reducing embodied ones, while at low/medium load,
spatial sharing can reduce both, eliminating the tradeoff entirely.
Impact of energy sources. So far, we reported emissions assuming
a gas energy source. We next study the impact of different energy
sources. Fig. 5 breaks down the operational, embodied, and total
emissions for SDXL/Whisper across energy sources (findings hold
for other model sets). Spatial sharing reduces embodied emissions
by 27% compared to no sharing, regardless of the energy source
(the energy source does not impact the magnitude of embodied
emissions, Equation 3). However, while spatial sharing increases
operational emissions for this model set regardless of the energy
source, the magnitude of the operational emissions varies with the
energy source due to large variation (74X [22]) in carbon intensity
across sources.

This variation alters spatial sharing’s impact on net emissions,
as it shifts whether operational or embodied emissions dominate.
For instance, with gas, spatial sharing inflates emissions by 30%
compared to isolated execution since operational emissions dom-
inate. However, with wind energy, spatial sharing cuts emissions
by 20%. Despite the slight increase in operational emissions (6.17
to 8.27 mgCO2), spatial sharing reduces the dominating embodied
emissions by 22% by using one GPU to serve the workload.
Takeaway #4: The energy source shifts which types of emissions
dominate the net carbon footprint. Hence, it changes the efficacy of
spatial sharing to reduce carbon emissions for a given model set. As the
energy source of the grid powering data centers varies daily (sometimes
hourly) [20], serving systems must adjust spatial sharing decisions
across a cluster to optimize carbon emissions over time.

Impact of model input/output requirements. We end our analy-
sis with studying the impact of varying model input/output require-
ments. Previous works study this when executing a single task on
a GPU [32, 59]; we study the extent of their impact in shared GPU
settings. We observe SDXL/Whisper (findings hold for other model
sets) as we change the image resolution SDXL generates. Fig. 6
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shows that lowering resolution reduces SDXL’s latency by 5.2X%,
with or without spatial sharing: decreasing resolution quadratically
reduces the dimensions of the latent space that SDXL’s U-Net oper-
ates on, thereby reducing convolutional operations. This variation in
output requirements greatly impacts carbon efficiency: spatial shar-
ing increases emissions by 14% for 1Kx1K images but reduces them
by 32% for 256x256 images. This is because the total time to serve
the workload under spatial sharing reduces by 1.92x when generat-
ing low-resolution images. Although isolated execution serves the
workload faster (by 5s), the energy savings from using one GPU
with spatial sharing outweigh the slight latency increase.
Takeaway #5: Model architecture and input/output requirements
are key drivers impacting carbon efficiency. For certain model require-
ments, the increased execution time from spatial sharing inflates oper-
ational emissions, while for others, the latency increase is negligible
compared to the energy savings from using fewer GPUs.

4 CARBON-EFFICIENT INFERENCE SERVING

Our study highlights the utilization fallacy: optimizing for utiliza-
tion alone does not always ensure carbon-efficient inference serving.
The impact of sharing GPUs to reduce emissions depends on several
drivers (co-located models, request rate, model input/output re-
quirements, and energy sources), which prior works overlook from
a carbon lens. Thus, we require new systems with novel carbon-
centric policies and mechanisms. In this section, we explore several
next steps towards a carbon-efficient inference serving system.

4.1 Efficient Power Estimation for GPU Sharing

Ideally, the policies governing resource management decisions should
account for the carbon-efficiency drivers to reduce the emissions
of serving inference workloads. However, to do so requires under-
standing how concurrent model serving affects GPU power and
inference latency, which impact operational and embodied emis-
sions (Equations 2 and 3). MIG’s strong isolation makes it relatively
simple to forecast a model’s inference latency since it is not affected
by the other models it is placed with: we can quickly offline profile
(<30s) a model’s latency under each MIG partition, independent
of other models. However, efficiently estimating the power of a
GPU concurrently serving models is non-trivial. Offline profiling
all model sets is infeasible due to the combinatorially large number
of unique sets. Thus, we propose a preliminary methodology that
combines analytical models with high-level profiling to efficiently
and accurately estimate GPU power under concurrent execution.
Modeling GPU power draw when sharing. Traditionally, total
GPU power draw Pr is broken down at a high level as:

PT=P5+PD

©

Pg is the GPU’s static power draw that is constant and workload-
agnostic (Ps =~ 45W for A100s) [10, 37]. Pp is the GPU’s dynamic
power draw, which fluctuates with frequency, voltage, and work-
loads. We first used this simple model to estimate a GPU’s power
draw that concurrently serves models. We estimated each model’s
Pp in isolation under its MIG slice (Pt — Ps, observed via offline
profiling) and then summed each model’s Pp with Ps for a final es-
timate. However, this estimation severely overestimates GPU power
(1.8 on average, Fig. 7 red bar). Unlike the power-gated compute
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Fig. 7. Observed vs estimated GPU power drawn when sharing using
two proposed power models. See § 4.1.

units [29], shared auxiliary components (e.g., L2 cache, memory con-
trollers, interconnects, peripheral interfaces) remain active when
any MIG slice is in use [29]. Hence, this estimation double-counts
the power draw of auxiliary components.

To remove the double-counting, we break down Pp as the power
of the compute units Pc, which are power-gated, and the power of
the other components Pp which are not. We further decompose Po,
the power we are double-counting, as the dynamic power draw of
the auxiliary components when active Pp 4 and idle Po; [38]. With
this, we model a GPU’s dynamic power draw as:
®)
Poy is independent of the workload(s) [2, 38], but Pc and Ppy4 are
workload-specific. Moreover, all three components vary with GPU
frequency. Hence, accurately estimating GPU power draw while con-
currently serving models requires understanding the implications
of the frequency level and determining each model’s Pc and Pp4.
Unfortunately, current tools (e.g., nvidia-smi [48], NSight [45, 46])
lack support for such fine-grained power information. As a first step
in this work, we make a few simplifications to derive these values.
We assume the frequency is fixed at 1410 MHz (we leave accounting
for different frequency levels as future work). We also assume Pp4
is additive across models. We then model the total GPU power when
concurrently serving multiple models as:

Pp = Pc + Ppyg + Por

N
Pr(My...My) =Ps+Por + Z Pe(i) + Poal(i)

i=1

(6)

To solve Equation 6 for a given set of models, we use high-level
profiling to derive Ppj, as well as Pc and Pp4 per model i.
High-level profiling. We first estimate the value of Po, which
is a one-time cost since it is workload-agnostic. To determine Ppy,
we solve a 3x3 set of equations using Equation 6 with three un-
knowns: Por, Pc, and Pp 4. We deploy one, two, and three instances
of the same model (e.g., MobileNet), each given a 1/7 MIG slice, and
observe the GPU power while serving dummy requests. While Pg
and Ppy are constant, Pc and Pp 4 scale linearly by the number of
instances (Pc3 with three instances of a model is 3 X Pcqp). With
this information, we solve the equations and find Po; ~ 25W. This
profiling takes <1 minute.

With an estimate of Poj, we next use high-level profiling to es-
timate values for Pc and Pp4. Unlike Poy, Pc and Ppoy vary per
model. Since modern GPUs power-gate compute units [29], Pc de-
pends on the MIG slice; Po4 does not, as auxiliary components are
not power-gated [29]. We estimate Pp4 by solving a 2 X 2 system
of equations with Equation 6 (two unknowns, Pc and Pp4) using
power measurements observed when one and two instances of the
given model, each allocated a 1/7 MIG slice, serve dummy requests.
Then, to determine Pc for a model, we deploy the model under
each MIG slice, measure total GPU power while it serves dummy
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Fig. 8. Tuning frequency of shared GPUs to the model set and energy
source can further reduce emissions. See § 4.2.

requests, and compute Pc for that slice by rearranging Equations 4
and 5. The profiling process to estimate Pp4 and Pc per model takes
<2 minutes.

Efficacy of our methodology. With four model sets, Figure 6
shows that our methodology (blue bar) accurately estimates aver-
age GPU power during concurrent execution. Compared to sum-
ming each model’s estimated dynamic GPU power (26% error), our
technique improves estimation accuracy (only 15% average error).
However, we still overestimate by 1.2X on average. We suspect this
error stems from our assumption that Pp 4 is additive across models.
We discuss techniques to explore as future work that are promising
in further improving our estimations.

Practically profiling one-level deeper. Kernel-level profiling
can offer higher accuracy, albeit it is expensive: profiling GPT-J-6B
kernel-level utilization and power draw took 3 hours [45]. However,
we find that (1) a small set of kernel types dominate latency [57],
and (2) these kernels are shared across model types, differing mainly
in data size (results omitted for brevity). This offers a practical path
forward: profile key kernels once to learn how power scales with
data size and utilization, then use each model’s kernel trace to build
accurate power profiles without costly per-model profiling.

A call to action. Previous works offer accurate power predictions
via fine-grained modeling [3, 29, 31]. However, applying these meth-
ods to shared GPUs requires expensive profiling for each model set,
which is prohibitive due to the exponential number of unique sets.
We propose building individual model profiles by profiling common
kernels across model types, ensuring this low-level profiling is a
one-time cost. However, we require further research to build tools
that use these model-level profiles to provide accurate estimations
that capture the internal GPU intricacies of concurrent execution.

4.2 Tuning Frequency while Sharing GPUs

Prior works show tuning GPU frequency can reduce energy con-
sumption (§ 2), but its impact in shared GPU settings remains unex-
plored. Combining frequency tuning with GPU sharing may increase
emissions, as both inflate inference latency. Hence, we observe the
impact of frequency scaling with and without spatial sharing under
different model sets and energy sources (findings are similar for
load and input/output requirements). Fig. 8 shows that scaling the
frequency of shared GPUs can reduce emissions, albeit it must be
tuned to the model set and energy source. For example, with gas,
concurrently executing GPT/Whisper/MobileNet (top left) at 0.87
GHz cuts emissions by 1.43x compared to spatially sharing at 1.41
GHz and by 1.82x compared to dedicating a GPU per model at 1.41
GHz. All models continue to meet the SLOs (omitted for brevity).
However, by simply replacing GPT with SDXL (256x256 images) in
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the model set, the optimal frequency changes to 0.96 GHz, while
1.14 GHz is best for the set with just two models GPT/Whisper.
Similarly, the energy source impacts optimal frequency. With wind
energy, 1.23 GHz is best for GPT/Whisper/MobileNet, not 0.87 GHz
like gas. Lower frequencies reduce operational emissions by cutting
energy use, but inflate embodied emissions by increasing latency.
Thus, under low carbon intensity periods (wind), higher frequencies
are favorable, as embodied emissions dominate.

A call to action. Tuning the frequency of shared GPUs to the
model set and carbon-efficiency drivers can further reduce emis-
sions (Fig. 8). However, all MIG slices are forced to operate at the
same frequency. Fine-grained frequency control per slice could re-
duce operational emissions by improving GPU sharing efficiency
and tailoring performance to diverse model SLOs. This is becom-
ing increasingly feasible as GPUs scale and chiplet-based designs
emerge [14]. However, doing so may raise embodied emissions with
added circuit complexity, requiring a detailed trade-off analysis.

4.3 Heterogeneous GPU Clusters

This work evaluates spatial sharing using A100 GPUs. Further re-
search is required to investigate whether spatially sharing older
GPUs can yield greater carbon efficiency compared to deploying
newer hardware. Prior studies show the efficacy of leveraging het-
erogeneous clusters while not spatially sharing GPUs. However,
sharing older GPUs introduces new challenges. It requires navigat-
ing a larger deployment search space, as now the system needs to
choose which models to place together and which GPUs to use, both
of which are dependent on each other. Moreover, older GPUs only
support MPS, which can introduce interference between co-located
jobs. Hence, spatial sharing on older hardware using MPS requires
carefully constructing model sets to minimize interference.

5 CONCLUSION

This work presents our vision towards carbon-efficient inference
serving. We study the efficacy of leveraging GPU sharing mecha-
nisms to reduce carbon emissions across various models and het-
erogeneous workloads. We find that optimizing for utilization does
not always reduce carbon emissions, and that the tradeoff between
utilization and carbon depends on load, energy sources, and model
input/output requirements. We take a first step towards carbon-
efficient inference serving by introducing a fast, accurate methodol-
ogy to estimate GPU power under concurrent model execution and
show that tuning the frequency of shared GPUs to the model set
and key carbon-efficiency drivers can further reduce emissions. Our
work lays the foundation for rethinking systems and infrastructure
to improve the sustainability of inference serving.
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