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The rapid rise of Large LanguageModels (LLMs) has prompted a re-evaluation
of system architecture design, making energy efficiency and sustainability
more crucial than ever. Recently, wafer-scale architectures have emerged as a
viable alternative for LLM training and inference, as evidenced by the success
of Cerebras Systems. In this work, we examine the carbon implications of
wafer-scale architectures as compared to traditional GPUs. As a case study,
we examine LLMs on a Cerebras CS-3 system in order to quantify power and
total carbon. Then, we analyze total carbon delay product (tCDP) to evaluate
the carbon efficiency and performance potential of these systems. We take
the first step towards exploring this trade-off for wafer-scale versus tradi-
tional GPU architectures – and ultimately find there exists a rich design space,
depending on workload and hardware configuration.

CCS Concepts: • Computer systems organization→ Architectures; •
Hardware→ Power estimation and optimization; Impact on the en-
vironment.

Additional Key Words and Phrases: Wafer-Scale, Carbon Footprint, Large
Language Models, Sustainability, Sustainable Computing

1 Introduction
The recent surge in Large Language Models (LLMs) has forced dat-
acenter architectures to adapt – prioritizing greater efficiency to
handle increasing power and scale requirements. Datacenter energy
consumption due to Artificial Intelligence (AI) alone is projected
to increase to 6.7-12% of total US energy consumption by 2028 [32].
Meanwhile, the carbon emissions resulting from training LLMs is
increasingly significant. These rising demands have catalyzed a shift
toward rethinking both the infrastructure and compute hardware
powering modern AI workloads.
The resulting push for extreme efficiency in the datacenter has

introduced renewed interest in novel accelerators for AI. In recent
years, a plethora of accelerators have come onto market, each intro-
ducing their own computational advantage, ranging from increased
floating point operation (FLOP) count, specialized instructions, and
novel memory systems [11, 22, 29]. One particular example is the
wafer-scale architecture, where a chip consists of a single silicon
wafer, thereby reducing the need for off-chip communication [28].

While wafer-scale architectures are not new [25, 28], they have
only begun to show promise for large-scale applications in recent
years. One example of such a wafer-scale system is the Cerebras
architecture, first debuted in 2019 as the largest processor ever built.
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Fig. 1. Wafer-Scale systems present distinct performance, power, memory,
and embodied carbon trade-offs as compared to traditional GPUs. Here we
compare a case-study of CS-3 versus H100 systems, sweeping the number of
H100DGX boxes (x-axis) and plotting eachmetric normalized toCerebras CS-
3 system (y-axis). For example, taking the ISO-FLOPS scenario represented
by the red star (8 H100 DGX boxes versus a Cerebras CS-3), the H100 choice
has 2.61× more power, 2.69× less GB SRAM and DRAM, and incurs 1.24×
the embodied carbon.

Their subsequent family of wafer-scale engines (WSE) are manu-
factured to be 46,000 mm2 processor chips, each containing up to
2.6 trillion transistors [21]. The most recent Cerebras CS-3 system
in particular offers a promising alternative to traditional GPU archi-
tectures – achieving over 19× faster Llama4-Scout inference speeds
as compared to H100 GPUs [4].

Figure 1 examines an example of a wafer-scale system (the Cere-
bras CS-3 chip) and compares the trade-offs in terms of performance,
power, memory, and embodied carbon to a traditional GPU architec-
ture (i.e., H100 GPU). We sweep the number of H100 DGX boxes and
compare the FLOPS, power, and memory available (SRAM+DRAM)
in the system [2, 3, 7]. We then compute the embodied carbon, as is
later described in Section 3. Each star represents when the H100 sys-
tem metric is within 4% of the Cerebras value. We find that for the
same amount of power, an H100 system of 3 DGX boxes would offer
0.37× FLOPS, 0.13× memory capacity, and 0.46× embodied carbon
compared to CS-3. However, for approximately the same number of
FLOPS, H100 systems take 2.61× more power than Cerebras, while
using 2.69× less memory and consuming 1.24× embodied carbon.

However, this is only the tip of the iceberg. In order to fully ana-
lyze the design trade-offs for wafer-scale architectures as compared
to traditional GPUs, we must (i) understand how existing commer-
cial wafer-scale systems, such as Cerebras, fit into the wafer-scale
design landscape, (ii) characterize performance of LLM workloads
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Fig. 2. Architecture diagrams ofwafer-scale system (e.g. Cerebras CS-3) as compared to traditional GPU system (e.g. H100DGX system). Note that forwafer-scale
systems, individual dies in the wafer are physically connected, whereas in traditional GPU manufacturing, individual dies are diced and then re-packaged
together [1, 10, 23]. Diagrams are not drawn to scale.

on these systems, and (iii) analyze the full carbon-performance de-
sign space via careful evaluation of carbon efficiency metrics, such
as tCDP [13, 14]. We address each in turn throughout the paper.
While this is the first work to the best of our knowledge to an-

alyze carbon of wafer-scale, previous works have analyzed the car-
bon footprint of traditional and emerging computing systems [15–
17, 27, 30, 35, 37]. Furthermore, prior works have explored a variety
of energy efficiency and carbon footprint optimizations across the
stack. For instance, DynamoLLM optimizes energy and operational
carbon emissions of LLM inference environments [34]. Junkyard
Computing optimizes the computational carbon intensity (CCI),
accounting for both embodied and operational carbon, to repur-
pose old smartphones for cloud-scale computations [36]. Other
works, such as Carbon Explorer and EcoServe, implement carbon-
aware scheduling and AI inference resource provisioning in data-
centers [8, 19]. Additionally, from a hardware design perspective,
CORDOBA enables designers and architects to optimize computing
systems for carbon efficiency, quantified using total carbon-delay
product (tCDP), despite uncertainties in carbon modeling data [14].
In this paper, we build upon the aforementioned techniques to

present an analysis comparing carbon footprint of wafer-scale to
traditional GPU architectures. We use Cerebras as a case study here,
however, our analysis can be extended to other wafer-scale systems.
The key contributions of this work are:

(1) Wequantify carbon footprint trade-offs of wafer-scale
architectures versus traditional GPU architectures. Depending
on the memory configuration used, we find that the embodied car-
bon of Cerebras systems is between 0.34-1.86× the embodied carbon
of the iso-flops equivalent H100 DGX box system (Section 3).

(2) We characterize the power consumption of Cerebras
CS-3 systems across a range of LLMmodels, and find that typical
power consumption during model training is 21% higher than idle
power (Section 4).

(3) We evaluate the carbon-aware design space in terms
of total carbon footprint and tCDP and find that the optimal
configuration depends not only on hardware type but also
on how the system is deployed over time – i.e., the amount
of work done and time the system is active.While not initially
carbon-efficient, wafer-scale architectures like Cerebras CS-3 can
become more carbon-efficient than GPU-based systems when used
actively for a large enough fraction of their lifetime. For example, if
a Cerebras CS-3 system is active >40% of the time throughout a three

Fig. 3. Comparing wafer-scale and GPU Architectures. Roofline shows Cere-
bras enables traditional memory-bound workloads with arithmetic intensity
ranging from 10-100 FLOPs/Byte to be compute-bound. X marks a Llama
workload, calculated analytically.

year lifetime, and given the assumptions stated in Section 5.2 and
Section 6, it can be at least 1.54× more carbon-efficient (quantified
by tCDP) than the corresponding iso-flops system of 8 H100 DGX
boxes when processing the same amount of work (Section 5).

2 Wafer-Scale Architectures
In this section, we detail the architectural differences of wafer-scale
systems compared to traditional GPUs.

2.1 UnderstandingWafer-Scale
Wafer-scale chips consist of a single silicon wafer, eliminating the
need for small individual chips to be manufactured separately and
then integrated together on package. This offers advantages in terms
of fast and more energy-efficient die-to-die connections [21, 28]. Ad-
ditionally, the high memory bandwidth for on-chip memory enabled
by wafer-scale can help to alleviate the traditional memory wall for
memory-bound workloads [28].

2.1.1 CerebrasChipDesign. One promising example of the viability
of wafer-scale architectures is Cerebras Systems. Cerebras’ most re-
cent generation features the WSE-3 chip, which is 57× larger in area
as compared to a single H100 GPU [3]. The wafer contains more than
900,000 identical cores, each consisting of logic to SRAM in a 50:50
ratio [20, 23]. Altogether, the WSE-3 has 44 GB of SRAM on chip,
which reduces the need for off-chip communications traditionally
performed with NVIDIA’s NVLink and Infiniband networks [3].
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Fig. 4. Sweep of functional wafer yield (x-axis) to capture range of resulting
embodied carbon (y-axis). We assume 65.39% silicon yield of a 5 nmwafer.

2.1.2 Memory and Storage. In addition to the WSE-3 chip, Cerebras
systems include Swarm-X and Memory-X, specialized network and
memory components for effective communication and storage of
large model parameters, respectively. Swarm-X is an active network
fabric that performs broadcast and all-reduce operations while con-
necting across WSE-3 chips. In particular, Swarm-X allows Cerebras
to achieve near-linear performance scaling across multiple wafers
[33]. Memory-X consists of a combination of Flash and DRAM,
which holds model weights. In a typical training run, model weights
are stored in Memory-X before being streamed into the wafer where
the activations reside. The gradients are subsequently streamed out
of the wafer back to Memory-X where optimizer update happens
[33].
As shown in Figure 2, wafer-scale architectures consist of the

largest rectangle of silicon area that fits inside the circular wafer.
While individual die exist, they are not diced as in traditional semi-
conductor chips. Instead, the wafer stays as one chip. We further
examine the yield implications of this approach in Section 3.

2.2 Comparison to GPU Architecture
Figure 2 additionally highlights a typical GPU architecture, using
H100 as an example. Starting with the same circular wafer, individ-
ual die on the wafer are then diced. Each die represents an H100
chip, which is assembled with other chips for a DGX box. A DGX
box consists of 8 H100s connected by high-bandwidth NVLink.

In order to examine how wafer-scale architectures such as Cere-
bras compare to traditional GPUs, we first note that both H100 and
CS-3 are manufactured with TSMC 5nm technology node, whereas
A100 and CS-2 are both 7nm. Then, we examine peak performance
and memory bandwidth. As the roofline in Figure 3 shows, Cerebras
CS-3 system features 63× higher peak FLOPS than an H100 GPU.
The large amount of on-chip SRAM with high memory bandwidth
allows the memory-bound portion of the curve to be shifted left,
thereby enabling workloads that are traditionally memory bound
on GPUs to be compute bound on Cerebras. We note that both
memory- and compute-bound workloads have potential to bene-
fit from wafer-scale architectures, although the exact performance
differences would depend on the properties of the workload.

Table 1. Embodied Carbon Calculations

Metric H100 Cerebras CS-3

Total Wafer Area (mm2) 70685.83 70685.83
Total Area Used (mm2) 58,608.00 46,225.00
Silicon Yield (%) 82.91% 65.39%

Cembodied Logic (gCO2e/mm2) [18] 29.15
Cembodied DDR4/LPDDR5 (gCO2e/GB) [19] 290.00
Cembodied GDDR6 (gCO2e/GB) [19] 360.00

3 Quantifying Embodied Carbon ofWafer-Scale
In this section, we detail our methodology to analyze carbon foot-
print of wafer-scale systems as compared to traditional GPU archi-
tectures. We present a generalized analysis of wafer-scale systems
before quantifying carbon for our case study of Cerebras.
Yield. First, we need to understand the yield of wafer-scale ar-

chitectures and its implications on quantifying embodied carbon.
We note that historically, wafer-scale systems were impractical due
to yield implications [25, 28]. We quantify yield of wafer-scale ar-
chitectures in two parts. First, we calculate silicon yield defined by
the total silicon used per wafer divided by total wafer area. Second,
we incorporate the "functional wafer yield" (which we define here
as the fraction of wafers that result in a functional chip). We follow
the formula below to calculate total yield:

Yield= (Silicon Yield)×(Functional Wafer Yield)
There are a plethora of models for determining yield in the lit-

erature [12, 26]. In order to minimize assumptions, we sweep the
percentage of functional wafer yield and quantify the resulting em-
bodied carbon. This provides a range of embodied carbon values
for wafer-scale architecture, without beholding to a specific manu-
facturing or assembly technique. Figure 4 illustrates this sweep. We
show the embodied carbon of wafer-scale architectures on a 5 nm
wafer when sweeping functional wafer yield from 40-100%.

To calculate embodied carbon (Cembodied), we assume a 300 mm
TSMC 5 nm wafer and the Taiwan energy grid [17] while taking
the above yield into account. We use IMEC reported gCO2e/mm2,
assuming no abatement [18]. The parameters for our calculations
are in Table 1.
Techniques to Improve Yield. Recent innovations have im-

proved die yield significantly. For example, Cerebras enables wafer
scale integration by utilizing small-sized cores and high defect toler-
ance as well as a technique to adaptively route around bad cores [10].
Since the area of each individual WSE-3 core is small (0.05 mm2),
the resulting silicon area lost due to each defect is considerably
less as compared to a traditional GPU, where an entire Streaming
Multiprocessor (SM) unit (6.2 mm2) would be lost. As outlined in
[10], Cerebras assumes random die placement such that each defect
lands in a unique core, and then calculates the resulting die space
lost due to defects. Cerebras’ routing architecture allows the system
to route around defective cores to maintain the chip’s computational
capabilities and high fault tolerance. Current CS-3 products have
900,000 active cores out of 970,000 physical cores, i.e. 93% of the
chip silicon area is active. Under these assumptions, the functional
wafer yield of CS-3 becomes close to 100%, thereby falling on the
lowest end of the embodied carbon sweep from Figure 4.
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Fig. 5. Embodied carbon footprint for a range of Cerebras and NVIDIA sys-
tems, accounting for logic die and memory. We find the embodied carbon of
the minimumCS-3 memory configuration is 22× larger than a single H100
GPU, but 2.9× smaller than an iso-FLOPS system of 8 DGX boxes.

Embodied Carbon of Wafer-Scale Logic and Memory. We
expand our above analysis quantifying embodied carbon of logic
to now include embodied carbon of memory used in a wafer-scale
system and GPU architectures. We use CS-2 and CS-3 architectures
as an example, and quantify the resulting embodied carbon from the
logic and the Memory-X system, specifically for DRAM to ensure
fair comparison with GPU architectures. There are several Memory-
X DRAM capacities available, and so we sweep the minimum (1.5
TB) and maximum (36 TB) capacities. In a similar manner, we look
at three generations of NVIDIA GPU architectures and quantify
embodied carbon of the logic and HBM. We repeat this analysis
for a system of 8 DGX boxes (64 GPUs) to analyze the iso-FLOPS
scenario from Figure 1.
Figure 5 shows the resulting embodied carbon footprint of both

logic and memory for the range of Cerebras systems and NVIDIA
GPU systems. We find the embodied carbon of the minimum CS-
3 memory configuration is 22× larger than a single H100 GPU,
and 2.9× smaller than a iso-FLOPS system of 8 DGX boxes.

4 Examining the Cerebras CS-3 System
To better understand the power and energy consumption of wafer-
scale architectures, we profile a Cerebras CS-3 system across LLM
workloads.

Power TracesMethodology.We record power of a CS-3 system
through measurement of its power distribution units (PDUs). Each
CS-3 system contains 9 PDUs, which we sum to get total power. Our
resulting power measurements represent power of the WSE chip,
not the Memory-X and Swarm-X systems. We work in collaboration
with Pittsburgh Supercomputing Center (PSC) and CerebrasCloud
to access Cerebras hardware and obtain power measurements [9].
Through a series of experiments, we observe idle power is 19.7 kW.

PowerMeasurements Results. Figure 6 shows a snapshot of
Gemma2-27B model training and the resulting power trace. We
highlight three sections of our training snapshot here, including
power for device setup, power during 2 training steps, and power
during device checkpointing. We find that power reaches up to 24.1
kW during model training, as highlighted in green. We observe that
during device setup, power increases slightly from idle power due
to transfer of weights, and power consumption remains near idle
power when saving the model checkpoint.

Fig. 6. Gemma2-27B training power trace on Cerebras CS-3. We analyze
the device setup, training steps, and saving checkpoint phases separately, as
shown. Power during model training reaches a peak of 24.1 kW.

Fig. 7. Llama3.1-8B training power trace on CS-3 system. Power draw for
training is relatively constant at ∼24 kW.

We put this snapshot into context by profiling longer training
runs, such as the Llama3.1-8B power trace in Figure 7. We find that
power consumption during model training stays relatively constant
at about 24 kW. From these experiments, we see that typical power
consumption during model training is 21% higher than idle power.
In contrast, typical power consumption for training on H100 GPU
is 9.29× higher than idle power. This has potential implications for
operational carbon, as we will examine in the next section.

5 Carbon-Aware Design Space
We subsequently explore the carbon design space to quantify the
trade-offs between wafer-scale systems and traditional GPU archi-
tectures. To do so, we analyze both (i) total carbon (embodied +
operational) and (ii) total carbon delay product (tCDP) [14].

5.1 Operational and Embodied Carbon
We analyze total carbon emissions of wafer-scale versus GPU archi-
tectures by quantifying their embodied and operational carbon. We
continue to use the CS-3 system as an example of a wafer-scale chip
and our methodology can be applied to other wafer-scale systems.
Embodied carbon calculations are derived as shown in Section

3. Operational carbon is calculated using an upper bound of power
for each system (e.g., measured training power for Cerebras and
TDP for H100, as further discussed in Section 6), along with the
duration of execution of an LLM workload and a carbon intensity
of 380 kgCO2e/kWh [17].

5.2 Quantifying Carbon Efficiency
To quantify carbon efficiency and capture the carbon-performance
trade-off of wafer-scale systems, we examine tCDP, which is the
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Fig. 8. Total carbon footprint (top) and carbon efficiency (bottom) of different
H100 GPU configurations and CS-3 systems for projected (i) Llama 3.1-8B
and (ii) Llama 3.1-70B.

product of total carbon and workload execution time [14]. Here, we
quantify execution time= number of tokens generated

tokens per second .
We compare total carbon and tCDP for CS-3 versus traditional

GPU architectures for the task of LLM inference. In order to create
a fair comparison, we sweep number of H100 DGX boxes, as was
done in Figure 1. We use reported benchmark numbers from [5, 6]
to capture Cerebras performance in tokens/second as a throughput
metric (note: not a latency target). We assume each platform runs
with the optimal batch size to maximize their respective memory
capacities. We additionally assume the number of WSE-3 wafers
necessary based on memory capacity as outlined in [23]. We report
three Memory-X DRAM configurations of CS-3 for completeness.
We then compare CS-3 performance to reported performance of
H100 systems assuming 1 DGX box [5, 6].
To scale to multiple DGX boxes, we use a FLOPS calculation to

project tokens/sec based on combined peak FLOPS of each system.
Note that we use this as a theoretical performance projection to
project similar tokens/sec onto a larger amount of hardware (e.g.,
as an upper bound for inference serving), since we acknowledge
this is independent of Llama-8B’s ability to parallelize over the hard-
ware specifically. We compare tCDP, a measure of carbon efficiency,
across two common LLM sizes (Llama3.1-8B and Llama3.1-70B) to
quantify the impact of increasing number of WSE-3 wafers needed.

5.2.1 Running Continuously. We first examine the resulting total
carbon and tCDP assuming we run the system continuously to gen-
erate a given number of tokens. We sweep the number of tokens
generated up to O(1011), which represents running continuous infer-
ence for approximately 1.5 years. Figure 8i highlights the resulting
total carbon and tCDP analysis for the 8B parameter model (i.e., us-
ing 1WSE-3 wafer). We find that the CS-3 1.5 TB system initially has
higher total carbon than 1 or 2 H100 DGX boxes, until generating
>109 tokens at which point total carbon of CS-3 is less. We note that
CS-3 systems have higher tCDP−1 (higher values correspond to bet-
ter carbon efficiency) regardless of the number of tokens generated
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Fig. 9. Total carbon (left) and tCDP (right) plotted versus number of tokens
generated (x-axis) when assuming a range of percent time active running a
projected Llama3.1-8B model for 3 years. We factor idle power in Coperational
calculations, and demarcate increasing percent time active as progressively
darker colors in the graph.

for the 1.5 TB and 12 TB configurations. This is because Cerebras
has 4.6-9.3× higher performance (tokens/sec).

We further examine inference of a 70B model in Figure 8ii. Since
4 WSE-3 wafers are needed to serve the Llama-70B model instead of
one, we observe an increase in total carbon for CS-3 configurations.
This makes it such that H100 systems are more optimal from a total
carbon perspective. However, if we examine carbon efficiency as
tCDP−1, we find an interesting trade-off where the most optimal de-
sign depends on the usage of the machine. After generating O(1011)
tokens, the CS-3 1.5 TB system has 9.58× better tCDP than 1 DGX
box, whereas it has 0.98× the tCDP−1 compared to 10 DGX boxes.

5.2.2 Varying Carbon Intensity. In the scenario where carbon in-
tensity of use (CIuse) varies over the course of a day, the relative
cross-over points would stay consistent.

For example, Figures 8 and 9 would see a shift along the axes with
varying carbon intensity – i.e. if CIuse is lower, operational carbon
and therefore total carbon would decrease, causing both curves to
shift downwards and a shift to the right in the cross-over point. We
note that in Figures 8 and 9 we assume both systems are running
on the same grid, and therefore fluctuating carbon intensity would
not change the relative conclusions of this section.

5.2.3 Factoring in Idle Power. To capture a more realistic view of
system usage, we subsequently incorporate idle power into our anal-
ysis. We assume a lifetime of 3 years, and sweep the percentage of
time our system is active over the course of those 3 years, assuming
the system sits idle for the remaining time. We factor idle power
into our operational carbon calculation using the following formula:

Coperational= (timeactive×poweractive×CIuse)
+(timeidle×poweridle×CIuse)

Our resulting analysis can be seen in Figure 9. As shown, we
plot both total carbon and tCDP−1 when sweeping the system’s
percent active time from 10-100%. Each vertical line represents the
same amount of work done (i.e., tokens generated). We find that
the break-even point of total carbon falls between 30-40% active
use of Cerebras. That is, if Cerebras is used <30% of the time, an 8
or 10 DGX box system has lower total carbon. This is due to the
high idle power of Cerebras as compared to H100 systems, as shown
in Section 4. However, if the active time of the Cerebras system is
high (e.g., >40%), Cerebras could see benefits from a total carbon
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perspective when for a given number of tokens, the total carbon
emitted is less for Cerebras than 8 or 10 DGX boxes.

We additionally examine the resulting tCDP−1 while accounting
for idle power. We find that from a carbon efficiency perspective, if
the amount of work desired is such that an H100 DGX system needs
to be used for >20% of the time to produce the given number of to-
kens, then given our assumptions in Section 5.2 and Section 6 it could
be better to use Cerebras. This holds true for various DGX box con-
figurations and results from the superior performance of Cerebras,
which can generate roughly 2430 tokens/second. We further observe
that if a Cerebras system is active >40% of the time, and given the
aforementioned assumptions, CS-3 is at least 1.54× and 1.31× more
carbon-efficient for Llama3.1-8B execution than 8 and 10 DGX boxes,
respectively. Thus, our results demonstrate there is a distinct tradeoff
when it comes to finding the optimal hardware for carbon efficiency,
depending on the amount of work done and time the system is active.
We find that wafer-scale is a promising architecture that we expect
to have carbon efficiency benefits over existing GPU architectures
when manufactured at high yield, if such systems are heavily used.

6 Limitations and FutureWork
Comparing wafer-scale architectures to traditional GPUs is a chal-
lenging task. In this section, we highlight potential limitations of
this study and clarify the assumptions underlying our analysis:

(1) We acknowledge yield calculations can be highly varied, de-
pending on how defect densities are modeled. We therefore gener-
alize our yield analysis beyond Cerebras specifically in order to cap-
ture the impact of other wafer-scale systems, as shown in Figure 4.

(2) While flash storage is an important factor to consider in
embodied carbon [24, 31], we do not include flash storage in our
calculations here in attempts to provide equal comparison between
Cerebras and H100 systems. Since the embodied carbon of GPU
architectures does not typically include for example CPU storage,
we do not include the flash component of Cerebras Memory-X sys-
tems. This way we standardize the comparison of embodied carbon
between the two systems by focusing on SRAM and DRAM. We
note that when including flash storage in the Cerebras embodied
carbon calculation, the maximum memory configuration of CS-3
has 11× higher embodied carbon due to 1500 TB flash, whereas the
minimum memory configuration does not include flash.

(3) The reported FLOPS utilization measured on our Cerebras
system is very low (<20%), yet power measurements suggest the
hardware is being utilized 4300 W above idle power. We therefore
suspect the reported utilization may not accurately reflect the typ-
ical definition of Mean Flops Utilization (MFU). Improved telemetry
in future work would help this effort.

(4) For our operational carbon calculations, we assume an up-
per bound of power measurements for each system. For Cerebras,
we utilize an upper bound on inference power by plugging in our
measured training power, assuming similar utilization. In a similar
manner, we use an upper bound for H100 power through TDP values.
However, we acknowledge each system does not run continuously
at maximum power. To tackle this, we incorporate idle power into
our analysis in Figure 9. In future work, we hope to conduct more

detailed power measurements of both systems and include sweeps
of system utilization levels.

Furthermore, while we use CS-3 and H100 configurations as case
studies here, it is important to note that specific configurations could
change in future generations.We note that future work could expand
our analysis to other workloads beyond LLMs as well. Our work sets
the foundation for further exploration to design more carbon-aware
wafer-scale systems for AI workloads across hardware lifetime.

7 Conclusion
Throughout this work, we aim to compare wafer-scale architectures
versus traditional GPUs, grounding our analysis in Cerebras CS-3
and H100 DGX systems. We find that there exists a rich design
space depending on model architecture and hardware configuration
for determining a carbon-efficient and high performing optimal
design. We hope this work inspires future optimization strategies to
trade-off embodied carbon benefits of traditional GPU architectures
versus energy efficiency of wafer-scale architectures.
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