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Training large-scale Neural Networks requires substantial computational
power and energy. Federated Learning enables distributed model training
across geospatially distributed data centers, leveraging renewable energy
sources to reduce the carbon footprint of AI training. Various client selection
strategies have been developed to align the volatility of renewable energy
with stable and fair model training in a federated system. However, due to
the privacy-preserving nature of Federated Learning, the quality of data
on client devices remains unknown, posing challenges for effective model
training. In this paper, we introduce a modular approach on top to state-of-
the-art client selection strategies for carbon-efficient Federated Learning. Our
method enhances robustness by incorporating a noisy client data filtering,
improving both model performance and sustainability in scenarios with
unknown data quality. Additionally, we explore the impact of carbon budgets
on model convergence, balancing efficiency and sustainability. Through
extensive evaluations, we demonstrate that modern client selection strategies
based on local client loss tend to select clients with noisy data, ultimately
degrading model performance. To address this, we propose a gradient norm
thresholding mechanism using probing rounds for more effective client
selection and noise detection, contributing to the practical deployment of
carbon-efficient Federated Learning.

CCS Concepts: • Computing methodologies → Artificial intelligence; •
Hardware → Impact on the environment.

Additional Key Words and Phrases: Sustainable AI, Federated Learning,
Carbon-aware Training

1 Introduction
The rapid advancement of deep learning has led to models with
hundreds of billions of parameters, consistently outperforming pre-
vious AI benchmarks. However, this progress comes at a significant
cost: larger models demand more computational power, resulting in
hours of GPU training time, increased energy consumption, and car-
bon emissions of up to 24.7 tonnes of CO2 for training a model with
approximately 170 billion parameters [17]. Recent studies project
that the energy demand of global data centers will reach 1,000 TWh
by 2026, driven in large part by the surge in AI inference and train-
ing workloads. Furthermore, carbon emissions from these activities
are estimated to contribute up to 8% of global emissions within the
next decade [9].

One of the most promising strategies to mitigate the carbon foot-
print of neural network training is to align computational work-
loads with the availability of renewable energy sources [20, 21]. Dis-
tributed training approaches, particularly those leveraging geospa-
tially distributed data centers, offer a unique opportunity to utilize
local renewable energy surpluses. Federated Learning (FL), in par-
ticular, enables decentralized training across data centers or edge
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devices, making it a suitable candidate for carbon-aware, geospatial
model training [2, 25].

To exploit renewable availability, client selection strategies in FL
have been developed to dynamically allocate training workloads
based on the local computing capacity and renewable energy avail-
ability of clients [3]. However, due to the privacy-preserving nature
of FL, the quality of local data remains unknown. This presents
a challenge: current selection strategies often rely on client-side
training loss to determine utility, yet high loss may stem from either
valuable, hard examples—or noisy and corrupted data [15]. Conse-
quently, selecting clients solely based on high loss can inadvertently
introduce harmful noise into the collaborative training process.
Achieving a balance between sustainability and model perfor-

mance requires more nuanced approaches that can infer the impact
of a client’s data without breaching privacy. We propose a noise-
aware client selection mechanism that leverages gradient norm
statistics as a proxy for data quality. Inspired by the Critical Learn-
ing Periods [1, 28], we show that estimating the Fisher Informa-
tion Matrix via gradient norm during probing rounds allows for
identifying clients whose data positively contribute to model con-
vergence—while filtering those with potentially corrupted or noisy
samples.

In our experiments, we demonstrate the following key findings:

• Enhancing traditional loss-based client selection with a sin-
gle gradient norm thresholding round improves resilience
against noisy or corrupted client data.

• Integrating carbon budgets into the client selection process
enables a more balanced trade-off between model perfor-
mance and sustainability in carbon-aware FL.

Our findings are supported by a series of experiments, presented
throughout the remainder of this paper. In Section 2, we discuss
related work on carbon-aware FL, noise-robust training and data
valuation. Section 3 outlines our system design, including carbon
data integration and our proposed client selection approach. In Sec-
tion 4, we evaluate the effectiveness of gradient norm thresholding
for filtering noisy clients. Finally, in Section 5 and 6, we summarize
our contributions and provide an outlook on incorporating data
valuation techniques into privacy-preserving FL.

2 Related Work and Background
Previous studies align client selection strategies with the high volatil-
ity of renewable energy within the power grid [2, 25]. Recent studies
have investigated various strategies for client selection, including
choosing clients according to the size of their local datasets [18], or
favoring clients that exhibit higher training losses [4, 15]. None of
those take data quality into account.
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Fig. 1. System Overview: Clients represent datacenters in 30 regions within the US. While the data quality is unknown we introduce probing rounds in the
beginning of federated training to identify clients with noisy data. Integrating carbon budgets we can balance clients with high data utility and their current
carbon intensity.

Noisy data can significantly disrupt the training process by pro-
ducing high loss and erratic gradients, leading to unstable parameter
updates and reduced learning efficiency [6]. While examples with
slightly higher losses are valuable for guiding meaningful learning,
excessively large training losses often indicate noisy or corrupted
data that should be avoided [6, 8, 16, 22].
Critical learning periods in neural networks are early phases of

training during which the model is most plastic and responsive,
forming lasting internal representations that significantly influence
its final performance [1, 7]. During this phase, distinguishing be-
tween informative, high-impact examples and harmful noisy data,
enables more effective and stable training [12]. Several works ap-
proximate the Hessian as an indicator for critical learning periods
using Fisher Information Matrix [11, 27], which by itself can be
approximated via gradient norm for more efficient computation
[28].

3 System Design and Approach
In Federated Learning (FL), data is typically non-IID across clients,
leading to significant variations in data quality and utility. Some
clients may hold high-quality, diverse, and representative datasets
that support convergence and generalization, while others may hold
noisy, biased, or redundant data that hinders training and degrades
overall performance.
In our system, we extend client selection strategies through an

explicit probing round at the beginning and consecutive filtering via
a coefficient threshold to maintain model quality and avoid selecting
harmful data.
While aligning computation with renewable energy availability

promotes sustainability, it restricts the client pool and introduces
variability in participation. This often leads to reliance on subop-
timal clients, negatively affecting training efficiency and model
accuracy. While the use of a limited carbon budget increases client
availability, it is essential to prioritize clients not only based on
energy availability but also on their expected contribution to model
performance.
We enable the selection of higher-emission clients through the

use of a fixed carbon budget and improve budget efficiency via
informed client selection. To achieve this, we model the trade-off
between clients’ statistical utility and carbon intensity by adapting
Oort’s reward calculation mechanism [15]. Figure 1 visualizes our
noise-aware client selection extension for carbon-aware FL.

3.1 Client Selection through Gradient Norm Probing
To enable robust client selection under real-world data noise, we be-
gin by evaluating all clients during an initial probing round. Clients
are assessed using the statistical utility formulation proposed in
Oort [15], but instead of using the loss approximation, we com-
pute utility based on the gradient norm once at the beginning:
𝑈 (𝑖) = |𝐵𝑖 | ·

√︃
1

|𝐵𝑖 |
∑
𝑘∈𝐵𝑖

∥∇𝑓 (𝑘)∥2, where ∇𝑓 (𝑘) is the gradient
of the loss function with respect to sample 𝑘 , and ∥∇𝑓 (𝑘)∥ denotes
its L2 norm. 𝑈𝑖 is the utility and 𝐵𝑖 the local data of client 𝑖 .
This utility, further referred to as probing utility, reflects the

curvature of the local loss landscape, capturing data informativeness
and noise sensitivity more effectively than training loss. While more
computationally intensive, it offers greater robustness in federated
settings.

The server aggregates client probing utilities and applies a utility-
variance-based threshold. Specifically, a client is retained if its prob-
ing utility satisfies utility ≥ 𝑐 · max(utility), where 𝑐 ∈ [0, 1] is a
configurable coefficient that controls the exclusion level, and its
effect is evaluated in 4.1. This ensures that only the highest-utility
clients are retained, while those falling below the threshold are
excluded from subsequent training rounds.
This approach is not limited to the gradient norm–based utility

examined in our study; other metrics can be used in its place or
combined to evaluate clients during the probing round. Different
thresholding strategies can then be applied to enable more robust
client selection. Moreover, the overall method is compatible with
other client selection approaches.

3.2 Utility Aware Carbon Budget Allocation
To address the limitations of energy-aligned training—such as re-
duced client availability and reliance on suboptimal participants—we
explore a client selection method that accounts for a fixed carbon
budget and allocates resources based on client utility. Our method
builds on Oort’s client selection strategy [15], enhancing it with
carbon-awareness to improve training efficiency without exceeding
emissions constraints.

We replace Oort’s exploration mechanismwith the probing round
introduced earlier, during which we can also compute statistical
utility as proposed in Oort[15] for all clients. Rather than selecting
only the top-scoring clients based on utility alone, we formulate
a budget-aware optimization problem. In each round, the server
selects a subset of clients that maximizes the total utility score while
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ensuring that the round’s total emissions remain within the carbon
budget:

max
𝑆⊆C

∑︁
𝑖∈𝑆

𝑟𝑖 s.t.
∑︁
𝑖∈𝑆

𝑐𝑖 ≤ 𝐵𝑡 , |𝑆 | ≤ 𝐾

Here, C is the set of all clients, 𝑟𝑖 is the utility score of client 𝑖
(obtained from the probing round), 𝑐𝑖 is the carbon intensity of
client 𝑖 in round 𝑡 , 𝐵𝑡 is the carbon budget allocated for round 𝑡 , and
𝐾 is the number of clients selected per round.

By explicitly modeling the trade-off between utility and emissions,
this strategy improves budget efficiency and mitigates the perfor-
mance degradation often caused by over-reliance on low-emission
clients.
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Fig. 2. Assigned carbon intensity values for clients over 100 training rounds.
Each round corresponds to one hour, spanning from 2023-01-15 00:00:00
to 2023-01-19 04:00:00 (UTC). The bottom plot highlights daytime inten-
sity patterns for three clients from different regions.

4 Experiments
We evaluate our proposed strategies under two practical considera-
tions: data quality variation and the temporal–spatial variability of
carbon intensity across energy regions.
We perform experiments using CIFAR-10 [13] with data dis-

tributed across clients non-IID under Dirichlet (𝛼 = 10) on 30 clients.
A simple CNN (2 convolutional and 3 fully connected layers) is
trained with 10 clients per round, 2 local epochs, batch size 32, using
Adam optimizer (learning rate = 0.001).

To assess robustness to data noise, specifically inaccuracies or
inconsistencies in input features that disrupt the relationship be-
tween features and their corresponding labels, we simulate feature
noise by adding zero-mean Gaussian noise with standard deviation
𝜎 = 1 to each image, followed by restricting pixel values to the valid
range [0, 1]. This perturbs image details while slightly preserving
the overall structure. We replace the data of 6 clients with corrupted,
noisy variants.

To model and assess how carbon intensity data can be utilized in
combination with statistical utility, each of the 30 clients is assigned
to a U.S. energy region, using hourly carbon intensity historical data
from Electricity Maps [5], as illustrated in Fig. 2. For simplicity, we

assume that all clients have equal power demand, with each client
consuming 1kWh during training, and each training round lasting
one hour.
For carbon budgeting, energy curtailment data [5] is combined

with carbon intensity data: if curtailment is available, the client is
assumed to operate on curtailed (zero-emission) energy and assigned
an intensity of 0; otherwise, the previously recorded intensity value
is used.

4.1 Handling Noisy Clients via Probing-Based Client
Evaluation

We evaluate gradient norm thresholding, described in Section 3.1, on
a data distribution that includes six corrupted clients, by applying it
to two standard baselines: Random and Oort [15]. In this configura-
tion, we use only Oort’s statistical utility for its reward mechanism,
excluding system utility to focus specifically on data quality. The
resulting thresholded variants are referred to as RandomWT and
OortWT, respectively.
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Fig. 3. Client selection counts, 6 out of 30 clients contain noisy data.

Without thresholding, corrupted clients are frequently selected
for training. As shown in Figure 3, Oort consistently prioritizes
these clients due to its utility metric, which is based on local training
loss—typically increased for noisy data. Although Oort includes an
optional blacklisting mechanism that allows the exclusion of clients
after participating in a specified number of rounds, it continues
to favor corrupted clients prior to that point. In contrast, gradient
norm thresholding enables the identification of noisy clients and
their exclusion of subsequent training rounds.

Selecting an appropriate threshold is key to filtering out noisy or
harmful clients while retaining useful ones. In our setup, a value
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Fig. 4. Convergence curves under noisy data scenario. Baseline methods
are compared with their thresholded variants. Thresholding reduces the
impact of corrupted clients, resulting in faster and more stable convergence.
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of 𝑐 = 0.5 provides a good balance, in practice, this would require
evaluation on a small, representative subset of the data.
The results in Figure 4 demonstrate that the overselection of

noisy clients significantly degrades Oort’s performance, leading to
reduced accuracy. While Random selection does not systematically
favor noisy clients, it still includes themwith high probability, which
disrupts convergence. In contrast, the thresholded variants, OortWT
and RandomWT, result in faster and more stable convergence and
achieve higher final accuracy. The improvement is particularly ben-
eficial for methods like Oort, which tend to prioritize high-loss
clients—enhancing robustness in the presence of noisy data.

While the average carbon intensity of corrupted clients is lower
than that of others (see client IDs 0–5 in Fig.2), their selection leads
to increased carbon emissions while achieving lower accuracy. Al-
though the probing round introduces a one-time computational
cost, it allows reaching maximum accuracy earlier, allowing for a
reduction in training rounds, as demonstrated in Figure 5, which
shows emissions measured at the point of maximum accuracy.
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Fig. 5. Accuracy–emissions comparison across methods. Bars show the car-
bon emissions spent during training up to the point of maximum accuracy,
while the line shows the corresponding maximum accuracy.

4.2 Evaluating Budget-Constrained Utility-Aware Client
Selection

We evaluate the utility-aware carbon budget allocation strategy
introduced in Section 3.2, here referred to as OortCA. We compare
it to the original Oort strategy, which serves as the baseline with
unconstrained emissions usage—meaning all clients are available for
selection regardless of their carbon intensity. The total emissions
from Oort serve as a reference point for setting carbon budgets and
define the emission baseline.
Carbon budget is set for the entire training and divided evenly

across rounds, with unused carbon carried over. If the budget is
spent before reaching the desired number of clients in a round,
as the remaining are selected curtailment clients with the highest
utility scores.

We test OortCA across different levels of carbon budget relative
to this emission baseline. Evaluation proceeds as follows: we begin
with a zero-carbon budget, which restricts selection to clients using
only curtailed (i.e., zero-emission) energy, significantly limiting
the available client pool. We then increase the carbon budget in
10% increments, gradually expanding the set of eligible clients for
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Fig. 6. Impact of carbon budgeting on CO2-emissions and model perfor-
mance, compared to standard Oort client selection with full client availabil-
ity. Results are shown for two scenarios: (a) clients with clean data, and (b)
clients with corrupted data.

selection and allowing higher-emission clients to be included, as
shown in Figure 7.

As shown in Figure 6, by effectively balancing client utility despite
reduced availability due to budget constraints, OortCA achieves final
accuracy comparable to the unconstrained Oort baseline — while
using only 40% of its emissions.
We further repeat the experiment under the noisy data setup,

combining the utility-aware budget allocation (Section 3.2) with
the gradient norm thresholding approach (Section 3.1). The result-
ing method, referred to as OortCAWT, enables more robust client
selection in the presence of corrupted data while maximizing the
use of limited carbon budgets and spending the budget on clean,
high-utility clients.
Figure 8 presents extended results using the DenseNet-121 [10]

model evaluated on the CIFAR-100 dataset and experiments with
the EfficientNet-B1 [23] evaluated on the Tiny ImageNet. The Tiny
ImageNet contains 100,000 64×64 color images of 200 classes. CIFAR-
100 [14] contains 60,000 32x32 color images across 100 classes.

The results suggest that in a clean data scenario, the client se-
lection strategy manages to archieve similiar model performance
even with a reduced/constrained client availability. While in un-
der noisy data conditions model performance varies drastically. In
this case, filtering out noisy data via gradient norm improves ro-
bustness. Moreover, when combined with carbon-aware training
(e.g., budgeted carbon emissions), this approach enables accuracy
improvements while accounting for reduced carbon emissions. This
opens the possibility of strategically allocating carbon budgets to
achieve accuracy gains in noisy data scenarios.

5 Future Work
In this section, we outline potential future directions informed by
the experiments and insights gained from this work.
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Data Valuation in Carbon-Aware Federated Learning FL en-
ables privacy-preserving distributed training, offering a platform to
explore data valuation methods for sustainable AI. Techniques such
as Federated Shapley Values and Gradient Alignment should be eval-
uated in carbon-aware settings to balance fairness, bias mitigation,
and carbon efficiency [24, 26]. Asynchronous Federated Learning
(AFL) is a promising alternative, removing reliance on potentially
inaccurate and costly carbon intensity forecasts. Coupling AFL with
data valuation and carbon budgeting may yield practical, carbon-
efficient training strategies. Another direction involves leveraging
critical learning periods—stages where models are most sensitive to
high-quality data. Aligning these phases with moderately carbon-
intensive, high-value data could improve both convergence and
sustainability [1]. To reduce computation during probing rounds,
data coresets can be estimated via a single round of local inference
[19]. This lowers the cost of gradient norm calculations and can aid
in efficiently onboarding new clients.

6 Conclusion
In this paper, we investigated the impact of noisy data on client
selection strategies and their implications for carbon-aware comput-
ing. We also explored the influence of carbon budgeting for larger

client availability and its effect on model performance. Our experi-
ments demonstrate that gradient norm thresholding is effective for
filtering noisy clients, and that strategic use of carbon budgets can
mitigate the effects of sparse client availability during periods of
renewable energy volatility. We hope this work not only advances
understanding in this area but also encourages further research
into practical and efficient approaches to carbon-aware machine
learning.
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