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Data centers (DCs) form the backbone of our growing digital economy, but
their rising energy demands pose challenges to our environment. At the
same time, reusing waste heat from DCs also represents an opportunity, for
example, for more sustainable heating of residential buildings. Modeling and
optimizing these coupled and dynamic systems of heat generation and reuse
is complex. On the one hand, physical simulations can be used to model
these systems, but they are time-consuming to develop and run. Machine
learning (ML), on the other hand, allows efficient data-driven modeling, but
conventional correlation-based approaches struggle with the prediction of
interventions and out-of-distribution generalization. Recent advances in
causal ML, which combine principles from causal inference with flexible
ML methods, are a promising approach for more robust predictions. Due to
their focus on modeling interventions and cause-and-effect relationships,
it is difficult to evaluate causal ML approaches rigorously. To address this
challenge, we built a testbed of a miniature DC with an integrated waste
heat network, equipped with sensors and actuators. This testbed allows
conducting controlled experiments and automatic collection of realistic data,
which can then be used to benchmark conventional and causal ML methods.
Our experimental results highlight the strengths and weaknesses of each
modeling approach, providing valuable insights on how to appropriately
apply different types of machine learning to optimize data center operations
and enhance their sustainability.

CCS Concepts: « Information systems — Data centers; - Theory of
computation — Inductive inference; « Hardware — Power and energy.
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1 INTRODUCTION

Data centers (DCs) are the heart of the digital infrastructure, but
also consume large amounts of energy [17]. By 2030, the energy de-
mands of DCs are anticipated to grow significantly, with estimation
reaching over 700 TWh, equivalent to 2% of global electricity use,
which is a two-to-threefold increase compared to 2016 levels [15].
Most of the electric energy used in DCs is transformed into heat,
which is currently mostly emitted into the atmosphere. It could,
however, potentially be reused, for example, for district heating
[34, 35]. Hence, the recovery of waste heat from DCs is a promising
and timely initiative for minimizing their carbon footprint.
Modeling the thermal energy behavior of data centers (DCs) is
critical for improving their efficiency and sustainability. While data-
driven models have emerged as a fast and accurate alternative to
traditional simulation-based approaches [36], most are built on sta-
tistical correlations and struggle to generalize to unobserved scenar-
ios [20, 22, 27]. This limits their utility in evaluating interventions,
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Fig. 1. Data center with heat recovery testbed

such as changes in IT load or environmental conditions [7]. Ad-
dressing this gap requires approaches that better capture the causal
structure of DC operations.

To overcome the limitations of traditional ML models, recent
work has explored causal ML approaches to model energy systems
[6, 12]. These methods combine causal inference with flexible ML
tools to enable reasoning about interventions and counterfactuals.
Since it is difficult or impossible to validate such models using purely
observational data, and testing on real operational systems might
be expensive or not possible, researchers argue that it is vital to use
controlled physical testbeds to generate data with known dynamics
[8, 31].

Inspired by these testbeds, we built a water-cooled data center
testbed connected to a district heating network (Figure 1). This
testbed, equipped with sensors and controllable actuators, enables
controlled experiments. We collected detailed time-series data from
these interventions to train and test correlation-based and causal
ML models to predict the data center’s waste heat potential, rep-
resented by the water temperature in the district heating network.
By comparing their performance, we highlight the strengths and
weaknesses of each approach.

We found that the predictive performance of the models varied
substantially between overall performance and interventional sce-
narios. While conventional ML models performed in general well for
predicting the water temperature, causal ML approaches excelled
at predicting the effect of interventions. The results highlight the
utility of physical testbeds for evaluating models of sustainable com-
puting systems. In addition, our results demonstrate the potential
of causal ML for robust and transparent data-driven modeling of
such systems.

2 BACKGROUND
2.1 Modeling of Data Centers Operations

Approaches for modeling environmental and operational conditions
in data centers (DCs) can be grouped into three categories: simplified
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physics-based models, computational fluid dynamics/heat transfer
(CFD/HT) simulations, and data-driven methods [2]. Simplified mod-
els offer computational efficiency but rely on strong assumptions
that limit applicability in real scenarios [10]. CFD/HT simulations
solve complex physical equations and provide fine-grained, accurate
predictions, but are computationally expensive and time-consuming
to program [2], motivating the search for more efficient alternatives
[7]. Data-driven approaches like machine learning (ML) provide
a promising middle ground. Supervised ML involves developing a
statistical model to predict an output based on one or more input
variables [11]. The model is trained on historical data and then used
to predict outcomes for new, unseen cases stemming from the same
data distribution. At this, the primary objective is accurate predic-
tion, so the model is optimized to minimize the error between its
predictions and the actual values. It is to note that ML leverages
statistical association between variables, without necessarily consid-
ering the true cause-and-effect relationships of the data-generating
process [4, 18].

ML techniques have been extensively used for predictive model-
ing of DC operations, covering aspects such as electricity consump-
tion, server room temperatures, IT workloads, or energy costs. Jin
et al. [13] reviewed power consumption prediction models in DCs,
emphasizing the necessity of accurate models for effective energy
and thermal management. They found that polynomial and linear
regression models are the most accurate for predicting server power
consumption, and argued that future models should incorporate the
interdependence between temperature and electricity consumption
in DCs. In another example, Saxena et al. [26] applied regression
methods to predict power management in Azure Virtual Machines
and found that hybrid ensemble models and modified neural net-
works are better for highly diversified workloads. In addition, Lin
et al. [16] evaluated several ML models and found that tree-based
models, including XGBoost and LightGBM, delivered superior ac-
curacy for temperature prediction in air-cooled DC simulations,
while Tabrizchi et al. [30] found that modified convolutional and
long-short-term neural networks can make accurate temperature
predictions in DCs. Other studies have used trained ML models
for downstream optimization tasks. For instance, Yang et al. [32]
used different ML models (e.g. NNs, LightGBM, Random Forest, and
Recurrent NNs) to predict the Power Use Effectiveness of DCs and
later used them to determine the optimal set point of the condenser
water of the chiller that cools down the DC. They estimated that
their approach can save 1500 MWh of energy per year in a real DC.

These studies yield promising results in terms of predictive per-
formance under observational settings. However, they all rely on
ML approaches that do not account for causality or the effects of
interventions within the physical system. As a result, such mod-
els may struggle to accurately predict intervention outcomes or
scenarios not covered in the training data.

2.2 Causal Machine Learning

Causal Machine Learning (causal ML) can overcome the shortcom-
ings of traditional correlational ML by emphasizing the identifica-
tion of actual causal mechanisms that drive the data-generating pro-
cess [18]. A cornerstone of causal ML is the use of Graphical Causal
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Models (GCMs), which depict causal relationships within a sys-
tem through Directed Acyclic Graphs (DAGs) [18]. In these graphs,
nodes signify variables, while directed edges represent causal effects
between them.

Causal ML differs from conventional ML by selecting features
with a direct causal effect on the target, reducing confounding bias
[33]. Subsequently, non-parametric ML models can accurately model
the causal relationship, accounting for non-linearities and interac-
tions [18, 19].

Graphical Causal Models (GCMs) can be derived either from
expert domain knowledge or inferred with causal discovery methods.
In this paper, we focus on the latter, leveraging constraint-based
causal discovery techniques that identify causal structure based on
conditional independence between the variables. In our experiments,
we use a refined version of the widely recognized Peter-Clark (PC)
algorithm [29], tailored for time series data (i.e., data with lags)
and referred to as PC1. This adaptation concentrates on iterative
independence tests for the most relevant lagged variables [3, 25].
Also, we use the Peter-Clark Momentary Conditional Independence
(PCMCI) method, which enhances the process by better addressing
autocorrelation in time series data [25].

It is important to note that causal discovery methods for time
series rely on critical assumptions such as stationarity, meaning
that statistical and causal properties remain constant over time, or
causal sufficiency, which assumes no hidden confounders. These
assumptions are difficult to satisfy in practice, often causing false
positive or negative causal links [1, 9]. Nonetheless, causal discov-
ery methods can select variables with the best indication of causal
effects, leading to more robust models [33].

3 METHODOLOGY

We use causal discovery methods from the Python library Tigramite
[23] (time-series graph-based measures of information transfer),
which is designed for time-series data and identifies causal rela-
tionships based on conditional independence tests. Because such
methods assume stationarity in the input time series, we first as-
sess each series using the Augmented Dickey-Fuller test from the
Statsmodels library [28], adopting a p-value cutoff of 0.01. When
non-stationarity is detected, we transform the series via differencing
(subtracting each value from its immediate predecessor). The causal
discovery methods we used are the PC1 and PCMCI algorithms, ex-
plained in Section 2.2. They deliver a causal graph of the system (an
example of a causal graph is shown in Section 4.2). A combination
of a variable and a lag is a feature, where a lag refers to the value of
the variable at a previous time step. For the training of Causal ML
models, we use only the variable and the corresponding time lag
that has a connection with the target variable in the causal graph.
To ensure a comprehensive comparison with other traditional
methods, we include a baseline model that uses All features as well
as several conventional feature selection algorithms from the scikit-
learn library [21]. These include Recursive Feature Elimination RFE,
which iteratively removes the least important features using Lin-
earRegression; Principal Component Analysis PCA, which reduces
redundancy by transforming and selecting features that capture
at least 85% of the explained variance; tree-based selection Tree,
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which identifies important features via RandomForestRegressor and
retains those with importance scores above zero; and Lasso regres-
sion Lasso with an alpha of 0.1, favoring variables with non-zero
coefficients after L1 regularization.

The features (both causal and traditional) are then used in the
modeling phase. We use for modeling several regression models,
including Linear Regression LR, ElasticNet Enet, Multilayer Per-
ceptron Regressor MLP from the scikit-learn package [21], XG-
BRegressor XGB from the Xgboost library [5], and LGBMRegressor
LGBM from the LightGBM library [14]. For all models except Linear
Regression, we run random hyperparameter search and three-fold
cross-validation. The final evaluation is done on the test set, and we
compare the models with the Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Mean Absolute Percentage Error (MAPE).

4 EXPERIMENTS
4.1 Description of the testbed

The testbed’s P&ID is shown in Figure 2. It is divided into two
sub-systems: the DC side and the residential building side, each
operating an independent water circuit. On the DC side, a water
pipeline begins at the heat exchanger (HEX) on the surface of the
first Raspberry Pi (Pi), flows to another HEX on a second Pi, and later
goes into a water-to-water HEX. At this point, the water temperature
is monitored using a water temperature transmitter 1 (TT1). The
HEX transfers the waste heat from this water loop to the second one.
After passing through the HEX, the water temperature is measured
again using TT2. The water then flows through a water-to-air HEX,
which is cooled by a fan, before returning to a water tank. From
there, it is pumped back to the Raspberry Pi, completing the circuit.
The water in this circuit is heated by the CPUs of the Raspberry Pis’
(heat source) and can be cooled down by the water-to-water HEX
or by the water-air HEX with the fan (heat sink).

Data Center Residential Building @—

Water-air Heat (L) o4 4
Exchanger -

Water-air Heat
Exchanger;

|

Tank

Legend

DataSignal  veev. @ Temperature Transmiter
WiFi Signal . @ Hurmidity Transmiter
Electrical Signal - ————- @ Pressure Transmiter

Fig. 2. Piping and Instrumentation Diagram (P&ID) of the data-center
testbed, where water-cooled Raspberry Pi’s generate heat, which is trans-
ferred via a heat exchanger for heating in a separate water loop.

In our experimental setup, we want to investigate the waste heat
potential and, therefore, turn off the water-to-air HEX in the data
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center circuit in most settings, transferring as much heat as possible
to the residential building circuit through the water-to-water HEX.

On the residential building side, the water temperature is mea-
sured at TT3 before entering a water-to-air HEX, which is also
cooled by a fan. The water-to-air HEX emulates a heating system
in a household that draws different amounts of heat from the water.
The water then flows into the tank, passes through a pump, and is
directed back into the HEX. The water in this circuit is heated up
by the water-to-water HEX and cooled down with the water-to-air
HEX and the fan (heat sink).

Also, an air temperature transmitter (TT4) is installed outside
the building to monitor the external weather conditions. Similarly,
we installed a pressure sensor (PT1) and a humidity sensor (HT1),
not because we expect a strong influence to the experimental setup,
but to acknowledge that datasets often include extraneous variables
that may be unnecessary and could introduce confounding bias in
data-driven modeling.

4.2 Data Description and Causal Discovery

Table 1 provides an overview of the variables in the system, includ-
ing their mean values from the first training dataset. Our testbed
continuously produces data, which we aggregate into 5-second in-
tervals. Note that a feature is a combination of a variable and a
corresponding time lag (e.g., water temperature in the house lagged
by 3 timesteps); we use 4 as maximum lag, so the total number of
available features is 52 (13 variables multiplied by 4 lags). Tempera-
tures are reported in degrees Celsius, pressure in hectopascals, and
relative humidity in percent.

Table 1. Description of the variables in the experiments

Variable Description Mean
cpu_temp_1 Pi1 CPU (C°) 33.9
cpu_temp_2 Pi 2 CPU (C°) 31.5
env_humidity Room Humidity (HT1) 31.9
env_pressure Room Pressure (PT1) 1006
env_temp Room Temperature (C°) (TT4)  23.7
de_fan DC fan state (%) 0.0
de_pump DC pump state (%) 73.0
house_fan House fan state (%) 72.3
house_pump House pump state (%) 100.0
stress_ctrl Stress control CPU (%) 24.5
water_temp_in_HEX  Water in HEX (C°) (TT1) 21.9
water_temp_out_HEX Water out HEX (C°) (TT2) 21.6
water_temp_house House water (C°) (TT3) 21.7

We generated five datasets from experiments conducted on differ-
ent dates, each performed under distinct environmental temperature
conditions. In these experiments, actuator configurations, used as
system interventions, were randomly changed. The amount of heat
input into the system corresponds to the flow rate (DC water loop
speed) and the temperature difference before and after the CPUs.
High CPU loads result in higher energy inputs into the water circuit.
The heat transferred to the house circuit via a heat exchanger is
extracted with varying intensity, depending on the fan speed, using
an air-water heat exchanger.
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In our experiments, we aimed to replicate a range of real-world
scenarios, including full waste heat utilization, the necessity to
additionally cool the DC, fluctuating heat demand, changing envi-
ronmental conditions, and different levels of data center utilization.
Experiment 1 tested diverse CPU loads, house heating patterns,
and DC water loop speeds. Experiment 2 maintained full house
heating and water loop speed, varying CPU loads, and introduced
multiple environmental temperature drops. Experiment 3 replicated
Experiment 2 but with more stable environmental temperatures.
Experiment 4 introduced variability across CPU loads, water loop
speeds, house heating and occasionally activating the data center’s
HEX fan. Experiment 5 is similar to Experiment 1 but features a
rising environmental temperature.

The datasets generated for these five experiments vary in length,
ranging from 5,347 to 8,256 observations. Each observation com-
prises sensor measurements and current intervention variables!.
We split the gathered datasets into 70% training and 30% testing
sets, ensuring that the training data precedes the test data to pre-
vent temporal leakage. Across most experiments, the setup, coupled
with varying environmental temperatures, introduces partly out-of-
distribution patterns in the test set.
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Fig. 3. Stationary DAG representing the causal links between the variables
in a testbed “s training dataset

For the causal models, we perform causal discovery on the train-
ing set of every experiment. For example, Figure 3 shows an example
of the resulting stationary causal graph [24] of the first experiments’
train set, using PC1 and an alpha value of 0.05. Nodes represent
variables, links indicate causal influences, link colors indicate cor-
relation strength (blue: positive, red: negative), and node colors
and numbers indicate autocorrelation. The dc_fan was not acti-
vated in this experiment, and therefore has no color or links in
1An online appendix with time-series visualizations, raw data, all experimental results,

and the corresponding code for complete reproducibility is available in the repository:
https://github.com/zapataunipaderborn/testbed_experiments/
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the causal graph. The key variable to predict is water_temp_house
(water temperature measured on TT3). The graph correctly shows
that increasing water_temp_in_HEX and dc_pump speed (which
increases water flow and heat exchange) raise water_temp_House,
while higher house fan speed decreases it.

However, some links are incorrect: for example, CPU tempera-
tures are not linked in the GCM to water_temp_in_HEX at the DC
side, and the environment temperature incorrectly has a link to the
house pump motor speed. As discussed in Section 2.2, causal dis-
covery can produce false links due to violated assumptions. While
expert knowledge could be used to refine the graph [6], we avoid
manual adjustments, as our objective is to assess the performance
of automatic causal discovery methods and the resulting models,
comparing them to traditional approaches, even though the au-
tomatically identified features may include some incorrect causal
relationships. For the subsequent modeling using causal methods,
we selected only the lag variables that had a direct causal link to
water_temp_house, as identified by the causal discovery process.

To evaluate all modeling approaches, we first apply both tradi-
tional and causal feature selection techniques, followed by training
ML models with the resulting features to predict the house’s water
temperature one step in the future.

5 RESULTS

Our evaluation has two parts: first, we assess all models on the
entire test set. Second, we evaluate the models two minutes post-
intervention to asses their robustness.

Evaluation 1. The results of each experiment are presented in
Table 2 with the feature selection method (Feat. Selec.), the model
name, the number of features used (F. N°), and the metrics. The
models are sorted by lowest MAE, where we only showcase the
top-performing model for each feature selection method. For a com-
prehensive overview of all models and feature selection methods (in
total 54 models per experiment), please refer to the online appendix.

The Table 2 reveals that, across all experiments, models employing
the causal approach for selecting the features consistently demon-
strated superior performance, with an average error of 0.034 degrees
Celsius and a percentage error of 14.8%. However, the performance
difference between these models and the best model with traditional
feature selection or all variables ranges from only 0.3% to 14.6%. The
PCA feature selection exhibited overall poor performance.

Interestingly, LR was the top performer in nearly all experiments,
with the exception of Experiment 4, where tree-based models outper-
formed the others (RF and LGBM). This difference can be explained
by the underlying characteristics of the algorithms: linear regres-
sion is capable of extrapolating to values outside the range observed
during training, while tree-based models are limited to interpolation
within the span of their training data, as they lack leaves for unseen
values. As our interventions are random throughout the train and
test sets, we sometimes have an actuator “s parameter set that is not
exactly present in the train dataset. In Experiment 4, interventions
stayed within the training data range, enabling tree-based models
to excel.

Evaluation 2. In this evaluation, we consider the models listed
in Table 2 and calculate the MAE at each timestep over the two
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Table 2. Evaluation results for the experiments.

Exp. Feat.Selec. Model F.N° MAE MSE MAPE

Causal LR 20 0.0357 0.0021 0.1581
Tree LR 2 0.0375 0.0023 0.1660
1 RFE LR 26 0.0376 0.0023 0.1665
Lasso LR 18 0.0409 0.0028 0.1808
All LR 52 0.0413 0.0028 0.1823
PCA XGB 2 1.1451 1.5389 5.0212
Causal LR 16 0.0329 0.0017 0.1417
Lasso LR 16 0.0381 0.0025 0.1639
2 Tree LR 6 0.0408 0.0032 0.1755
RFE LR 26 0.0455 0.0047 0.1963
All RF 52 0.0518 0.0043 0.2223
PCA RF 2 0.5349 0.3802 2.2828
Causal LR 4 0.0319 0.0016 0.1411
All LR 52 0.0331 0.0019 0.1458
3 Tree LR 9 0.0358 0.0020 0.1580
Lasso LR 16 0.0359 0.0022 0.1585
RFE LR 26 0.0517 0.0047 0.2265
PCA ENet 2 1.6007 2.7418 7.0543
Causal RF 19 0.0354 0.0020 0.1521
Lasso LGBM 19 0.0355 0.0020 0.1528
4 Tree LR 9 0.1289 3.5293 0.5507
All RF 52 0.1409 0.0873 0.6034
RFE LR 26 0.1621 2.8015 0.6931
PCA MLP 3 1.2977 1.7766  5.5705
Causal LR 18 0.0342 0.0019 0.1481
Tree LR 9 0.0348 0.0020 0.1509
5 All LR 52 0.0443 0.0031 0.1911
RFE ENet 26 0.0506 0.0040 0.2184
Lasso LR 17 0.0743 0.0078 0.3192
PCA MLP 2 11619 1.6752 4.9813

minutes following an intervention, averaging the results across all
experiments and interventions. This yields a table of MAE values for
each timestep. To present these results in a concise and informative
way, we display them in Figure 4. We don’t show the results of the
PCA feature selection due to its poor performance.

In this scenario, all models perform worse than in the previous
evaluation, as predicting outcomes immediately after interventions
is inherently more challenging than making predictions across the
entire test set. The results indicate that the model trained with the
causal feature selection approach yields the best performance. No-
tably, the difference in performance between the causal models and
the rest of the models is substantially larger in this case. Previously,
the differences were small, ranging from 0.3% to 14.6%, whereas
now they range from 20% to 50%, depending on the lag after the
intervention.

ACM SIGENERGY Energy Informatics Review

Label

0.12 \
—— Al
Causal
—— lasso

0.10 \\ —— ${F:=

Average MAE Score
°
°
8

10 15
Timesteps After a Change Point

Fig.4. MAE per time step post-intervention across feature selection methods
using the best models from each experiment.

6 DISCUSSION, LIMITATIONS AND FUTURE WORK

By developing a DC testbed with heat recovery capabilities, we
created a platform to test and evaluate both conventional ML and
causal ML approaches for modeling a proxy for heat recovery po-
tential. Our work builds on the insights of Gamella et al. [8] with
a focus on applications in DC. We demonstrate that these envi-
ronments are essential for advancing ML research, as they allow
for robust model testing under real-world scenarios and controlled
interventions. This enables a comprehensive evaluation of mod-
eling approaches that can be used to optimize control systems to
reduce energy demand and enhance waste energy utilization in data
centers.

Currently, most ML applications in the context of DCs rely on
observational data from real systems or from simulations [13, 16,
26, 30, 32], and the evaluation of causal approaches relies mainly
on data from simulations [6, 12]. Our experiments provide empiri-
cal evidence in a controlled environment involving interventions
in the real DC testbed. The results show that under observational
settings, models trained with causally selected features performed
slightly better than those using all available features or those se-
lected through traditional correlation-based methods. Under inter-
vention scenarios, where changes are actively introduced to the
system, causal ML approaches significantly outperformed standard
ML approaches. These results highlight the importance of causal
modeling for understanding and predicting the behavior of sustain-
able computing systems, where interventions play a crucial role
in both optimizing operations and accurately evaluating control
strategies in data center environments.

It is important to consider that causal discovery methods may
be susceptible to errors in feature selection when their underlying
assumptions are violated [1, 9]. Such violations of assumptions are
likely inevitable in real-world scenarios, such as in the DC testbed.
Nonetheless, causal discovery methods can still effectively identify
features resulting in models that perform robustly, especially for
predictions following interventions. However, if the objective is to
precisely analyze the causal effect of a particular variable on the
target, it is essential to further refine the causal model and ensure
the correct causal features are included, for example, by adjustments
with domain knowledge.

Based on our results, we argue that testing these new causal
approaches on real physical systems is essential. ML practitioners
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should choose modeling approaches based on the specific task: if
the resulting models should be used as the basis for optimization
approaches, analyzing interventions, or for out-of-distribution pre-
dictions, causal ML approaches can make a significant contribution;
for only in-distribution prediction tasks, however, traditional ML
models continue to serve as reliable standard tools.

Even though the basic physical processes in real data centers will
be similar, the causal graph generated from the testbed cannot be
directly transferred because the temporal relationships between the
variables in data centers will be different (e.g., how long it takes
for heat to travel from the CPUs to the extraction point for waste
heat utilization). Nevertheless, DC operators can follow a similar
approach to that used in the study: first, identify the causal structure
of the data center using relevant measured variables, and only then
proceed with machine learning (ML) modeling. As the scale of the
DC increases, along with the number of sensors, causal discovery
methods can become computationally expensive. To address this,
variables may be grouped to reduce complexity; for instance, by
averaging CPU loads across all processors in a rack, or aggregating
temperature readings from sensors located in proximity within
the same water pipeline. Similarly, in large-scale data centers, it is
more important to measure the correct variables that have a causal
influence on the target variable than to simply increase the number
of variables monitored.

Moreover, it is important to conduct controlled interventions on
key system variables, such as the cooling system or the valves that
regulate water flow to the servers. These interventions should cover
the full safe operating range of the system, including extreme and
median settings (e.g., fully open, fully closed, and halfway open valve
positions). Such systematic interventions provide a strong empirical
basis for causal discovery algorithms to accurately determine cause-
and-effect relationships. Moreover, while as many interventions
as possible should be conducted to improve causal identification,
the feasibility depends on factors such as the strength of the causal
effect, the level of sensor noise, and the cost of performing the
interventions. These trade-offs should be evaluated on a case-by-
case basis.

Furthermore, DCs can significantly benefit from more accurate
and robust predictive models to support decision-making, scenario
evaluation, and control strategies. Since control systems in DCs
continuously implement interventions within the system, causal ML
models could serve as a foundation for advanced control frameworks
such as model predictive control (MPC) or reinforcement learning
(RL). The final impact of improved predictions on economic and
sustainability metrics, such as Power Usage Effectiveness (PUE) or
the fraction of heat recovered, depends on how sensitive the specific
application is to prediction errors. For these systems, even small
inaccuracies can accumulate over time, potentially resulting in a
substantial impact when models are used repeatedly.

Our study has some limitations that future research should ad-
dress. The effectiveness of causal models depends heavily on the
accuracy of the underlying causal graphs. In our experiments, causal
discovery performed well, but it might be less reliable when based
solely on observational data without interventions. Additional graph
editing by domain experts could be necessary. Future work could
establish the conditions under which causal discovery methods are
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trustworthy, for example, investigating the required data quantity,
the number of interventions, and sampling frequency. In addition,
an analysis can be performed to examine the relationship between
the complexity of interventions in the different experiments, such
as whether one or multiple variables were changed, and the results
of the causal discovery, as well as the overall model performance.
Moreover, comparing simplified physics-based models, CFD/HT
simulations, and machine learning approaches, including causal and
physics-informed ML methods, could offer valuable insights into
their complementary strengths and modeling capabilities.
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