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Data centers’ energy consumption is expected to rise significantly over the
next five years due to the accelerated growth of AI and its computational
demands. Simultaneously, initiatives are underway to mitigate the envi-
ronmental impact of the energy usage by replacing brown energy sources
(e.g., coal) with green energy sources (e.g., solar), resulting in a projected
decrease in grid carbon intensity. Yet, the interplay between these two con-
trasting forces on data centers’ carbon emissions — a function of both energy
consumption and carbon intensity — has not received much attention.

In this paper, we analyze the operational carbon emissions of data centers
at this crossroads, by considering the increasing data center energy con-
sumption and the decarbonization of the electricity grid. In particular, we
integrate publicly available current and future energy projections, consider
multiple future scenarios, and provide a 5-year projection of datacenter
carbon emissions at the global, US, and state levels. Our analysis shows that
over the next five years, the rate of data center demand growth will over-
shadow the rate of grid decarbonization, with global (resp. US) emissions
projected to rise by 4.2× (resp. 4.1×) in the worst case by 2030. Moreover, we
observe considerable regional differences within the US, where emissions in
some states could increase by up to 3.4× by 2030.

CCS Concepts: • Social and professional topics → Sustainability; •
General and reference→ Estimation; • Applied computing→ Data
centers.

Additional Key Words and Phrases: Operational Carbon Emissions, Energy
Consumption, 5-year Projections.

1 Introduction
Data centers’ energy consumption has been a global concern for
the past 20 years, during which researchers have analyzed and
projected the energy consumption of data centers and the inter-
net. For example, researchers [32, 36, 43, 44, 50] have analyzed
the energy consumption of data centers between 2000 and 2020,
with a common conclusion that data centers’ energy demand will
be stable, accounting for 1-2% of the global energy consumption.
Despite the increase in computing demand, such stability was attrib-
uted to energy efficiency gains from advances in integrated circuit
(IC) designs, where energy efficiency have doubled every 1.57-2.6
years (Koomey’s law) [33, 35] along with advances in cooling (e.g.,
open-air cooling [2]), operating data centers at higher tempera-
tures [47, 62], and efficient power distribution approaches [2]. As a
result, between 2010 and 2018, the energy efficiency of computing
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and storage increased by 4.1× and 9×, respectively [43]. Moreover,
the International Energy Agency (IEA) estimates that from 2010 to
2020, global data centers’ energy consumption increased by only
10%, despite a 9.4× increase in computing demand [28].

However, recent studies highlight that the era of significant
energy efficiency improvements in data centers is coming to an
end, and foresee a substantial increase in data centers’ energy de-
mands [25, 51]. For example, according to the recent report by
Lawrence Berkeley National Laboratory (LBNL) [51], the Compound
Annual Growth Rate (CAGR) — which represents the average an-
nual growth rate over a specified period — of data centers’ energy
consumption has increased from 7% between 2014–2018 to 18%
between 2018–2023, and expected to increase by 13–27% between
2023–2028. Similarly, hyperscale data centers have reported 2-3×
increase in energy consumption between 2017 and 2022 [60]. Such
increase in energy consumption is attributed to: 1) slowdowns in
energy efficiency gains due to approaching the end of Moore’s law
and Landauer’s limit [4, 35, 38] as well as nearing the optimal PUE
with little room for further improvements, and 2) the rise of AI and
its computing demand [25, 60], where data centers are expanding
their compute fleets with AI accelerators, that typically consume
more energy [51].

In contrast to the energy consumption of data centers, which have
been extensively analyzed [18, 25, 32, 36, 37, 43, 44, 50, 51, 53], the
emissions of data centers, which reflects the true environmental and
health impacts of data centers [20, 27], have just begun to receive at-
tention. In this study, we focus on the operational carbon emissions
of data centers, which are the emissions directly associated with
the electricity consumption of data centers, excluding the emissions
from the supply chain, often denoted as embodied emissions [3, 24].
The operational carbon emissions of data centers, measured in car-
bon dioxide equivalent (CO2eq), is defined by the equation𝐶 = 𝐸× 𝐼 ,
where 𝐸 indicates the data center’s total energy consumption and 𝐼
denotes the carbon intensity of the energy feeding this data center.
The carbon intensity of electricity, in CO2eq per unit of energy (e.g.,
g·CO2eq/kWh), reflects the cleanliness of the electricity grid, where
grids that predominantly use fossil-based sources (e.g., coal) exhibit
high carbon intensity. Conversely, electricity grids with a significant
share of renewable energy have low carbon intensity. For example,
countries such as Sweden and Norway meet a large fraction of their
energy demand through hydroelectric power, resulting in a low
carbon intensity.
In recent years, electricity grids, which are responsible for 26%

of the global emissions [58] and 25% of US emissions [59], have
been undergoing a significant transformation. Motivated by the
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Data Source Scope Year Range
Global US State Estimate Projection

Electricity
Consumption

IEA [25] ✓ – – 2020–2024 2025–2030
IEA w/ LBNL CAGR ✓ – – 2024 2025–2030

Koot et al. [37] ✓ – – Pre-2021 2021–2030
EPRI [18] – ✓ ✓ 2016-2023 2024–2030
LBNL [51] – ✓ – 2016-2024 2025–2030∗

Carbon
Intensity

Ember [17] ✓ ✓ – 2016–2024 2025–2030
Electricity Maps [16] – ✓ ✓ 2017-2024 2025-2030

∗ we extrapolated the energy consumption for 2029 and 2030, based on the reported best and worst case CAGR.
Table 1. Data sources used in our analysis, their scope, and the year range. Our projections are highlighted in bold.

environmental benefits of renewables and their cost competitive-
ness [27], the adoption of renewable energy (e.g., solar and wind)
has experienced exponential growth over the past 20 years. Con-
sequently, the carbon intensity of electricity has seen significant
decreases, with many grids targeting 2050 to achieve carbon-free
electricity [10]. For example, Global, US, and Denmark carbon in-
tensities have decreased by 0.31, 36.8%, and 77.1% between 2000 and
2024 [17].

In this paper, we investigate the operational carbon emissions of
data centers at this pivotal crossroads by analyzing two competing
trends: (1) energy consumption in data centers, which is experi-
encing (or expected to experience) an unprecedented increase [51],
and (2) the grid carbon intensity, which is undergoing (or is ex-
pected to undergo) a decarbonization phase. Unlike the previous
reports, which focus on energy consumption [25, 51], or global
carbon emissions [25], our analysis characterizes the operational
carbon emissions of data centers at global, US, and state granular-
ities. In particular, we integrate current and future energy projec-
tions during this period under multiple scenarios that consider the
grid’s ability to transition to carbon-free sources, as well as scenar-
ios where global load projections follow the worst-case analysis
reported by [51].
Our Key Findings. The key findings are as follows:
(1) Over the next five years, the growth in data center demand will

likely overshadow the grid decarbonization. Consequently, by
2030, the global and US data center emissions could increase by
up to 4.2× (27% CAGR) and 4.1× (26.3% CAGR), respectively.

(2) Emissions computed based on different demand projections and
decarbonization scenarios vary significantly. For example, 2030
emissions in the US could differ by 6× between the best and the
worst case.

(3) We find significant regional differences in data center emissions
within the US. Virginia is expected to see the highest emission
increase within the US due to high demand growth and a low
rate of decarbonization. Data center emissions in Virginia could
increase by 3.4× (22.6% CAGR) by 2030 in the worst case.

(4) In 2030, emissions from the top 10 US states with the highest
data center loads could vary by 24.8%, depending on whether the
most or the least carbon-intensive states see the most demand
growth.

2 ResearchQuestions & Methodology
This section presents our research questions, data sources, and
methodology.

2.1 Research Questions
This paper analyzes the location-based [15] operational carbon emis-
sions of data centers from electricity use, calculated as a product
of electricity consumption and carbon intensity. Specifically, we
address the following research questions:
Q1 What are the current and projected carbon emissions in 2030, from

data centers globally, in the US, and across US states?
Q2 How do the different data center energy demand projections and

grid decarbonization scenarios affect data center emissions?
Q3 How would the US data center emissions in 2030 vary if the data

center energy demand shifted away from the current hotspots?

2.2 Data Sources
Table 1 summarizes the data sources used in our analysis. While
we recognize that our findings depend on the accuracy of the data
sources, our work uses the most recent publicly available data center
energy consumption estimates and projections, along with estimates
of carbon intensity at the global, US, and state levels. Additionally,
as shown later, we enhance these data with new scenarios that
further support our conclusions. In this paper, we refer to the data
prior to the publication year of a report as estimates and future
predictions as projections. All the data used in this paper are available
at https://github.com/codecexp/dc-emissions-2030.
Energy Consumption. Our analysis is based on estimates and
projections of data centers’ global, US, and state levels (see Figure 1).
Our global analysis relies on the data from the International Energy
Agency (IEA) and Koot et al. [37] (see Figure 1a). The IEA released
the “Energy and AI” report [25] in 2025. Their report projects global
data center electricity usage until 2035, given the accelerated growth
of AI. However, we limit our analysis to their 2030 projections. Our
analysis also considers the projections between 2021 and 2030 by
Koot et al. [37]. Although their projections did not explicitly consider
the rise of AI, their 99th percentile worst-case analysis, which we
use, highly matches the witnessed trends and IEA projections.
Our US analysis is based on the Lawrence Berkeley National

Laboratory (LBNL) [51] and the Electric Power Research Institute
(EPRI) [18] reports (see Figure 1b). The LBNL report projects data
center energy consumption between 2024 and 2028 in the US. The
report projects a CAGR of 13%–27%, attributing this to the accel-
erated growth of generative AI in the last year. In contrast to the
LBNL report, which estimates the aggregate data center energy con-
sumption across the US, the EPRI report provides aggregated and
per-state data center energy consumption in the US while consider-
ing a more conservative CAGR of 3.7%–15%. We note that higher
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Fig. 1. Data center energy consumption projections till 2030.
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Fig. 2. CI estimates and projections between 2017 and 2030 Projections based
on current trends are shown by dashed lines.

growth estimates in the LBNL report lead to non-overlapping esti-
mates, highlighted in Figure 1b, which can highly affect the future
carbon emissions. Per various reports, the consumption is projected
to increase by 1.3–3.03× (resp. 1.2–4.05×) at the global (resp. US)
level between 2024 and 2030.

Lastly, our state-level analysis considers the data from EPRI. How-
ever, in contrast to EPRI, which assumes that all states have the
same CAGR, we consider that states have different CAGRs as high-
lighted in recent reports [7, 14, 39]. Specifically, Virginia, California,
and Texas, which constitute 33.3% of the total US data centers [12],
exhibit 23%, 23%, and 20% CAGRs, respectively. For other states, we
assume a CAGR of 15%, as projected by EPRI.
Carbon Intensity (CI).We use the life cycle carbon intensity es-
timates provided by Electricity Maps [16] and Ember [17] as the
other input to our analysis. Electricity Maps reports carbon inten-
sities at the regional Independent System Operator (ISO) and the
US levels, while Ember reports at the global and per-country levels.
We compute the state-level carbon intensity by mapping the state
to the corresponding grid ISO. For states spanning multiple ISOs,
we use the carbon intensity of the ISO that covers most of the state
data centers as per the US Data Center Map [12].

Figure 2 shows the historical carbon intensity estimates for dif-
ferent levels. The carbon intensity is generally seeing a consistent
decrease, where the global and US energy’s carbon intensity have
decreased by 9.3% and 15% between 2017 and 2024 with an average
yearly decline of 1.4% and 2.2%, respectively. Figure 2 also shows
the projections till 2030 based on these trends, which we discuss in
detail in Section 2.3.

2.3 Methodology
We now discuss our methodology in detail. Our analysis computes
the future emissions of data centers globally, in the US, and across US

states with high data center capacities using an extrapolation-based
approach. For clarity, we convert all emission values from g·CO2eq
to MtonsCO2eq, where 1 MtonsCO2eq = 1012 g·CO2eq. Our work
looks at data center energy demand estimates and projections from
recent governmental and academic reports, and combines themwith
multiple demand increases and grid decarbonization scenarios. In
particular, we examine the potential permutations of energy and
carbon intensity projections and report the emissions in the worst,
best, and average cases. Next, we detail our growth scenarios for
the grid’s carbon intensity and data center demand.
Carbon Intensity Analysis. Despite the ambitious goals and sig-
nificant progress in integrating renewable energy sources, fully
decarbonizing the grid often encounters three primary challenges.
First, consumers often prefer the stability in electricity supply that
only conventional energy sources can provide. For example, the
newly announced Stargate data center will be powered by a 360.5
MW local natural gas power plant [54]. Second, due to the intermit-
tent nature of renewables, decarbonizing the grid may incur expo-
nentially increasing marginal costs, posing a challenge in the whole
grid decarbonization [1, 11]. Third, strained supply chains may im-
pede governmental efforts to acquire the necessary generation and
transmission infrastructure [25]. Considering these uncertainties,
we employ three scenarios in our analysis:

(1) ZeroCarbon 2050 (ZC50): This method presents an optimistic
scenario, where the electricity grids undergo a full decarboniza-
tion by 2050. We assume that the carbon intensities will start
decreasing linearly from 2024 and become zero in 2050.

(2) Current Decarbonization (CD): In this scenario, we consider the
historical decarbonization rate between 2017 and 2024 and em-
ploy a regression-based approach to compute the carbon inten-
sities until 2030. We note that in some cases (e.g., Washington,
see Figure 2), the carbon intensity may see minor increases.

(3) NoChange (NC): Lastly, we consider a pessimistic scenariowhere
carbon intensity remains unchanged from 2024 to 2030. Note
that although reports highlight that new demands may be met
by fossil fuels [54], we do not include scenarios where increases
in data centers’ energy demand lead to increases in carbon
intensity.

These future trends are highlighted in Figure 2. We see that the
trends vary across regions. As shown, global (resp. US) carbon in-
tensities may decline steadily, decreasing by 10.4% (resp. 13.6%) by
2030 when averaged across the three methods. More importantly,
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(c) Global (IEA w/ LBNL CAGR).
Fig. 3. Yearly projections of the US and global data center carbon emissions till 2030. Data center emissions in the US (resp. global) could increase by up to 4.1×
(resp. 4.2×) by 2030 in the worst case.

the figure highlights that in some locations (e.g., Texas), the current
decarbonization trends outpace the ZC50 scenario. Lastly, the figure
highlights situations where the carbon intensity increases, such as
the state of Washington, where the carbon intensity may increase
by up to 1.2× compared to 2024.
Data Center Energy Consumption Projections. In addition to
the energy consumption projected by different sources, we consider
two hypothetical scenarios as follows:
Scenario 1: Since the US hosts almost half of the world’s data
centers, it is possible that the US data center emissions will increase
at a much faster rate than the global average. For instance, the CAGR
outlined by LBNL [51] and IEA [25] reports reflect this difference,
wherein the LBNL’s lowest growth rate is comparable to the worst-
case scenario considered by the IEA, leading to situations where US
energy consumption sometimes exceeds global energy consumption
(see Figure 1). However, it is also possible that other countries will
see a similar growth rate to the US over the next five years. To
explore this, we model a scenario in which the global growth rate
adheres to both the best and worst-case CAGRs outlined by LBNL
(referred to as “IEA w/ LBNL CAGR” ).
Scenario 2: Data center demand growth in a region depends on
several factors, such as land availability, grid generation and trans-
mission constraints, etc. While Virginia currently has the most
data centers in the US, grid strain is slowing down newer deploy-
ments [30]. Meanwhile, states with enough grid capacity are em-
bracing data center growth [54]. Hence, the future growth across
states may deviate from the previous trends. To explore this, we
consider a scenario where data center demand increases differ from
historical trends.

Specifically, we consider two alternate scenarios and analyze the
variance in emissions in 2030 between them. The first scenario (re-
ferred to as “Brown”) assumes that the states projected to be the
most carbon-intensive in 2030 see the highest data center growth.
The second scenario (referred to as “Green”) assumes that the green-
est states see the highest growth. We consider these contrasting
scenarios to show the two ends of the emission spectrum. Our anal-
ysis has two assumptions: (1) the maximum demand growth in any
state is 30%, since any higher CAGR may not be practical, and (2)
we assume that only the top 10 states in terms of data center de-
mand can experience higher growth rates than today, since demand
increases in other states have minimal impact on the results as their
capacity and demand increase abilities are limited.

3 Data Center Emissions Analysis
In this section, we analyze the changes in data center operational
emissions from 2024 to 2030, starting with projections for the US.
We then analyze global data center emissions and compare the two
projections. Finally, we analyze regional emissions within the US
and how the US emissions may be affected by where data center
demand grows over the next few years.

3.1 US Data Center Emissions
Figure 3a shows the US data center emission estimates and pro-
jections from 2023 to 2030 using LBNL, EPRI, and Electricity Maps’
data. US data center emissions in 2024 range between 64.6 and
92.2 MtonsCO2eq, increasing from 61.6 MtonsCO2eq in 2023 when
considering a carbon intensity of 350 g·CO2eq/kWh1, as reported
in [51]. US emissions calculated using the LBNL data are projected
to increase between 1.8× and 4.1× by 2030, with an average increase
of 2.8×. This corresponds to an average CAGR of 18.8%, and up to
26.3% in the worst case. In comparison, emissions calculated using
the EPRI estimates are projected to increase by 1.5× on average and
2.3× in the worst case. This corresponds to an average CAGR of
6.4%, and up to 14.9% in the worst case. Interestingly, our analysis
shows that emissions could decrease by 8% in the best case, where
emissions could be 6× lower compared to the worst case emissions
based on LBNL projections. However, given current trends, such
an outcome will likely require a significantly faster rate of AI algo-
rithmic and efficiency gains, as well as higher grid decarbonization
rates, than predicted today.

Finally, since the emission range using the carbon intensity pro-
jections from Ember [17] falls within the range obtained using the
projections from Electricity Maps, we only show the emission pro-
jections using the Electricity Maps data.

Key Takeaways: US data center emissions could increase by 2.8×
in the average case and up to 4.1× by 2030 based on LBNL, which
corresponds to CAGR of 18.8% on average, and 26.3% in the worst
cases. Moreover, our analysis highlights that emissions computed
based on different demand projections and decarbonization scenarios
vary significantly, where the difference between emissions based on
LBNL’s worst case and EPRI’s best case can vary by 6×.

1Note that the 2023 carbon emissions, based on the 409.8 g·CO2eq/kWh carbon intensity
reported by Electricity Maps, are estimated to be 72.1 MtonsCO2eq.
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(b) Average Emissions
Fig. 4. Data center demand and respective emissions (2023 and 2030) for the top eight US states.
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Fig. 5. Yearly change in emissions in top three
states ( dark lines represent the average case).

3.2 Global Data Center Emissions
We next analyze how the global data center emissions may change
from 2024 to 2030, and compare them with the emissions from the
US data centers. Figure 3b shows the projected emissions till 2030.
The current global data center emissions (in 2024) are estimated to
be between 109.2 and 198.8 MtonsCO2eq, with estimates calculated
using the data from recently published sources leaning towards
198.8 MtonsCO2eq. This is equivalent to 0.26%–0.47% of the global
carbon emissions across all sectors2.

When calculated using the IEA data (resp. data from Koot et al.),
global data center emissions are projected to range from 243 to 597
MtonsCO2eq (resp. 111.7 – 587 MtonsCO2eq) by 20303. This implies
an increase of 1.2–3× (resp. 1.02–2.9×) from 2024, with an average
increase of 2×. This is equivalent to a 12% CAGR on average, up to
20.3% (resp. 19.7%) in the worst case. Although the best case projects
that emissions will remain almost stagnant, it is based on the data
from Koot et al. [37], which does not account for the current growth
of AI. Hence, similar to the best case for US data center emissions,
such an outcome will likely require different efficiency and grid
decarbonization trends than predicted today.
Emissions if Global Demand Growth Follows the US. Figure 3a
and Figure 3b show different trends of emission increase between the
US and the global data center emissions, especially when calculated
using the recent LBNL and IEA reports. The US emissions based on
the LBNL data have an 18.8% average CAGR, much higher than the
12% CAGR projected using IEA data. We also observe that the global
CAGR decreases from 13.9% between 2024 and 2028 to 8.3% beyond
2028, indicating a much slower growth in emissions in the later
years. However, if the global data center demand growth follows
the same rate as the US (“IEA w/ LBNL CAGR” scenario), global
emissions from data centers could range between 315.1 – 825.7
MtonsCO2eq in 2030. This would mean a 1.6–4.2× increase from
2024, with an average of 2.8×— equivalent to having an 18.8% CAGR
(see Figure 3c). While data center emissions globally may increase
slightly faster than in the US, as the global decarbonization rate
is slightly slower, the world and the US will see similar emission
growth rates on average.

2Global emissions across all sectors is estimated to be 41.6𝐺𝑡𝑜𝑛𝑠𝐶𝑂2𝑒𝑞 [61] in 2024.
3Our calculations encompass the recent IEA projections [25], which estimate the values
to be 215 – 475 MtonsCO2eq.

Key Takeaways: Recent demand estimates suggest that global data
center emissions could increase by up to 3× by 2030, with the rate
slowing down in the later years. However, if the global demand
follows the current US demand growth rate, such emissions could
increase by up to 4.2× by 2030, having CAGR of 18.8% in the average
case, and up to 27% in the worst case.

3.3 US States Emissions
Next, we analyze data center emissions within different US states.
State-wise emissions are highly non-uniform, with the top five
states currently accounting for 39%–50% of the US data center emis-
sions. Figure 4 shows the current data center demand and emissions
(in 2024), and the projected increase by 2030, which lies within the
best and worst case projections in LBNL [51]. The states are listed in
order of projected demand in 2030. As expected, Virginia currently
has the highest data center demand and emissions, followed by
Texas. Interestingly, some states (e.g., California) have lower data
center emissions than other states (e.g., Illinois) in 2024, despite
having more demand. Virginia is expected to have the most data
center emissions in 2030 since it has the highest CAGR for data
center demand, and a slow rate of grid decarbonization. On the
other hand, Oregon is projected to have only a 5.1% increase in
emissions by 2030 due to a very high rate of grid decarbonization.
Consequently, Oregon is expected to have lower carbon emissions
than many states (such as Georgia), even though it is projected to
have a similar or higher data center demand than those states.

Figure 5 focuses on Virginia, Texas, and California — the three
states expected to have the most emissions in 2030 — and shows
the range of increase in emissions Year-on-Year (YoY). Emissions in
Virginia (resp. Texas) are expected to grow between 2.6× and 3.4×
(resp. 2× and 3.4×) from 2024 to 2030, with the average rate being
3× (resp. 2.7×). This corresponds to an average CAGR of 19.8% and
18% in Virginia and Texas, respectively. California is also projected
to have a 2.7× increase in emissions (18.2% CAGR) on average over
the next five years, similar to Texas. Note that our state analysis only
considers the expected increases in energy and does not account
for worst-case energy demand; therefore, our state analysis shows
lower emission increases than the US-level.
Interestingly, Virginia and Texas have different CAGRs for data

center emissions, even though they have the same data center de-
mand growth rate. This is because Texas is projected to have an
average grid decarbonization rate of 4.6% per year, higher than the
2.7% for Virginia. Moreover, although California and Texas have
similar emission growth rates, the amount of emissions from data
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Fig. 6. 2030 data center emissions (top 10 states) under various scenarios.

centers (in𝑀𝑡𝑜𝑛𝑠𝐶𝑂2𝑒𝑞) in California is 3.9× less than that in Texas
since the California grid is much greener than the Texas grid [16].
2030 Emissions from Alternate Demand Scenarios. Finally, we
analyze the “Brown” and “Green” scenarios, where future demand
growth deviates from current trends. Figure 6 shows the projected
2030 emissions of the top 10 states for the two scenarios, and also
compares them to the projected emissions if the demand growth
trend does not change in the future. Compared to the current trend,
emissions in the top 10 states can increase by 21.5% or decrease
by 8.6% on average, depending on how the trend changes over the
next five years. This corresponds to an increase of 23 MtonsCO2eq
or a decrease of 9.2 MtonsCO2eq from the data center emissions
projected today based on the current trends. Overall, emissions in
the top 10 states can vary by 24.8%, or 32.2 MtonsCO2eq, on average
between the two scenarios.

Key Takeaways: Emission growth rates vary by state, with Vir-
ginia and Texas seeing up to 3.4× increase in the worst case. States
with similar growth rates can have different environmental impacts
depending on how carbon-intensive the respective states are. Data
center emissions in 2030 in the top 10 states can vary by 24.8%
in the average case, depending on whether the most or the least
carbon-intensive states see the most demand growth.

4 Other Considerations
Analyzing data center emissions has several challenges, ranging
from a lack of information to the validity of the estimates. While
we try to include multiple estimates and approaches in our analysis,
more needs to be done to analyze such emissions holistically. In
this section, we discuss some considerations and limitations that
are important but beyond the scope of this paper.
Location- versus Market-Based Emissions. Accounting for
carbon emissions can follow location-based or market-based ap-
proaches. Location-based approaches directly follow their local grid
energy mixture and report their carbon emissions. However, the
market-based approach assumes that users (or data centers) can
choose their sources based on Power Purchase Agreements (PPAs).
However, due to the lack of such information and the challenges
associated with market-based analysis [3, 5, 24, 40, 41], we limit our
work to location-based carbon emissions only.
Grid Decarbonozation Trends. While we only consider linear
decarbonization trends, we acknowledge that grid decarbonization
may undergo different trends. For instance, grid decarbonization

may see diminishing improvements as the ratio of renewables in-
crease [1, 11]. In addition, we do not consider the impact of nuclear
energy, which may significantly reduce the grid’s carbon inten-
sity [31, 52, 57], with expectations that some of these projects will
come online by 2030. Lastly, while the increasing energy demand
may lead to higher carbon intensity as data centers seek more stable
energy sources [26], our worst-case analysis only considers a stable
carbon intensity.
Embodied Emissions. The life cycle emissions of data centers go
beyond operational emissions to include complex supply chains in
buildings and computing hardware (embodied emissions). Although
recent research has made significant strides in estimating the em-
bodied carbon emissions of hardware, noticeable uncertainties still
remain in the estimates [19, 49]. Additionally, the heterogeneous
nature of equipment across data centers would make it highly com-
plicated to project embodied emissions reasonably. Therefore, this
work focuses only on operational emissions, with an extension to
include embodied emissions as future work.
Effects of Carbon-Aware Demand-Response. Researchers have
highlighted that demand-side adjustments leveraging the temporal
and spatial variability of carbon intensity [1, 6, 8, 9, 13, 21–23, 29, 42,
45, 48, 55, 56, 63] can reduce the carbon emissions of data centers.
However, due to the nascent nature of this domain and the lack
of information about such adjustments in practice, analyzing its
holistic impact is challenging and beyond the scope of this work.
Emissions Beyond 2030. Some experts predict that data center
emissions may plateau or decline after 2030 [25, 46, 60], especially
as AI gains further significance and aids grid decarbonization. How-
ever, such long-term predictions have many uncertain variables
and hence can often be significantly over- or under-estimated [34].
Hence, while hoping for a better future, we present a conservative
perspective and limit our projections to the next five years.

5 Conclusions
In this paper, we project the data center carbon emissions till 2030
at the global, US, and state levels. Our analysis shows that the
current demand growth will overshadow the current rate of grid
decarbonization, causing the emissions to increase by up to 4.2×
(resp. 4.1×) globally (resp. in the US) from 2024. Within the US,
Virginia and Texas could see up to 3.4× emission increase by 2030.
However, the emissions may vary widely depending on which states
see the most demand growth in the next few years. We aim to extend
our analysis to other regions outside the US and analyze embodied
emissions in the data centers as future work.
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