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The globally growing data centers energy consumption and their carbon
emissions pose significant environmental challenges. In this context, discern-
ing server fabrication and operational energy contribution to data center car-
bon footprint is key to identifying effective mitigation strategies. This study
partitions server carbon footprints into a) fabrication (embodied carbon), b)
static operational power, and c) dynamic operational power, and proposes
a novel 2D representation for analyzing data centers carbon impacts. This
representation highlights the contributions of these three a-c factors, for any
server load and any carbon intensity of electricity. To showcase our method-
ology and representation, we conducted experimental power measurements
on four diverse servers under various load conditions, and combined them
with Life Cycle Assessment (LCA) methods for their embodied carbon. Our
results show that operational energy generally dominates the total footprint.
Indeed, high static power consumption, due to poor energy proportionality
in current hardware, is a major carbon emission factor, especially at low
loads. We conclude that optimization efforts should follow this sequence: 1)
improve server utilization, 2) prioritize low-carbon electricity, 3) maximize
server lifetime. Hence, fabrication impact is primarily relevant only when
servers are powered by low-carbon electricity. Our representation shows
that reducing static power waste through future hardware with better energy
proportionality is a priority to design and operate sustainable data centers.

CCS Concepts: « Hardware — Interconnect power issues; « Information
systems — Web services; « General and reference — Metrics; Experi-
mentation; Reference works; - Computing methodologies — Artificial
intelligence.

Additional Key Words and Phrases: Energy, Throughput computing, ICT
carbon footprint

1 INTRODUCTION

Data centers are now a central backbone of our societies, providing
online services we daily use. As the demand for data, processing
and storage continues to surge, these facilities require increasing
hardware and energy. However, data centers operation consume
vast amounts of energy [4] and contribute to high carbon emissions.
Moreover, data center usage is fast growing: they consumed about
4.4 % of total US electricity in 2023 and their energy consumption
is expected to reach between 7 % and 12 % of total US electricity
by 2028 [27]. The massive adoption of Artificial Intelligence (AI)
is one of the main reasons for the observed increase of energy
requirements of data centers [6, 29]. Moreover, trends show that
bigger Al models lead to increased energy needs [33].

To handle such demand increase, new data centers are built, pre-
existing data centers operators renew their servers to offer more
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computing performance. Building or expanding data centers re-
quires new hardware acquisition, which also demands significant
energy and raw materials for manufacturing, leading to large green-
house gas emissions [36]. The environmental impact of hardware
manufacturing can be estimated through standardized Life Cycle
Assessment (LCA) methods, which evaluate the impacts associated
with each stage of the lifetime of a hardware component, from raw
material extraction and manufacturing, to operation, maintenance,
and device disposal or recycling [1].

A concerning aspect of data centers is underused hardware, such
as idle servers that remain powered on while awaiting requests,
resulting in resource waste, as energy and computational power is
consumed without processing any data [2, 3]. These setups not only
increase operational costs for data centers through static power but
also exacerbate their environmental impact.

This paper aims at better discerning the impact of the fabrica-
tion phase of servers from their dynamic and static energy impacts.
Analyzing these components is complex, as their relative impor-
tance shifts dramatically depending on server utilization and the
grid Carbon Intensity of Electricity (CIE). To exhibit the combined
influence of these two factors, we propose and utilize a novel 2D
representation, called Carbon Topography Representation (source
code available [34]). We then feed this Representation with eight
series of power measurements, corresponding to four servers and
two workloads. The Representation reveals the influence of different
operational scenarios on the overall carbon impact, enabling the
identification of the dominant factors.

2 DATA CENTER STUDY METHODOLOGY

The closest work to Carbon Topography Representation we are
aware of is the GreenChip 2D representation that relates a break-
even time for a device (in months or years) to its sleep ratio (share
of time during which neither static nor dynamic power are drawn)
and its activity ratio (share of non-sleep time where dynamic power
is drawn, i.e. truly useful share of processing time [16]. Break-even
time designates the minimum time to be waiting before replacing
a device (e.g. System-on-Chip (SoC) or memory) for the gain in
its energy efficiency to compensate its embodied energy i.e. the
energy spent to produce the new device. Carbon topography rep-
resentation is complementary to GreenChip representation in that
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it concentrates on carbon footprint and incorporates the notion of
grid CIE.

In order to build the carbon topography representation, we rely on
direct measurement of power consumption for operational carbon
emissions and LCA for embodied carbon emissions.

2.1

To evaluate a server operation carbon emissions, which stems from
its power consumption, we propose the experimental setup illus-
trated in Figure 1 that comprises three key components: the Hard-
ware Under Test (HUT), a Load Tester Device (LTD), and a Power
Distribution Unit (PDU). The HUT hosts an Service Under Test
(SUT) exposing a REST API endpoint that accepts parameters. The
load imposed on the HUT can be tuned through the requests sent
per unit of time.

Server Energy Consumption Analysis

Load Tester Hardware
Device Under Test Legends
Requests i Metrics and measures
HTTP | = Sorvice
Client Responses ‘ Test l:lPhysical devices
Web services
Drives Metrics
N Energy
Experiment monitor -
parameters Experiments
Drives Data A
- collection Power
Metrics T
| Distribution
collector Unit
Data collection i
S
Energy supply

Fig. 1. Data center energy efficiency testbed setup.

The HUT can take various forms, provided it meets three essential
criteria. First, the HUT must offer a SUT over HTTP/IP as described.
Second, it must provide a low-level monitoring tool to track hard-
ware and OS performance metrics. Lastly, the HUT must come with
a power cable pluggable in a PDU. Since our focus is on electricity
utilization, the HUT power supply must be measurable in real-time.
To achieve this, the PDU must integrate a network-accessible power
monitoring system, providing automated data collection.

The LTD serves as an experiment controller and operates three
core functions: an HTTP client, a HUT metrics collector, and a
PDU metrics collector. The HTTP client component simulates user
interactions with the SUT by periodically querying the HUT while
concurrently gathering performance and power metrics. We use the
well-established Grafana k6 tool [17] to precisely control the number
of requests concurrently reaching the SUT. As metrics collector, we
use Prometheus Node Exporter [26]. We wrote custom code to
retrieve power metrics from the PDU, an RNX UDPU®|21].

It is important to note that this setup isolates server-level power
measurements, deliberately excluding broader data center consump-
tion to maintain focus on the power consumption of the sole HUT,
coherently with the LCA that also captures the HUT exclusively.

We collected out measurements using four servers as HUT, listed
by performance in descending order: an ARM-based QuantaGrid
S74G-2U (QCT), an Intel-based ProLiant DL360 Gen9 (HPE), an
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Intel-based PowerEdge T430 (Dell), and a Raspberry Pi Model 4B,
used as a low power platform reference. We implemented two SUT:
the Count service simply increments a counter until reaching a limit
provided as parameter; the Al service performs a prediction of the
most probable next token of an input sentence. Measurement results
are available in full details in [12].

2.2 Embodied Carbon

As a concern for carbon impact, the energy consumed during the
utilization of the considered computing device does not reflect the
total environmental impact over the lifetime of the product. To
account for a wider share of the carbon emissions of a given service,
the embodied impact, caused by the fabrication of the device and
its end-of-life process, should also be considered [16].

The LCA methodology generates a comprehensive estimate of
the environmental impacts of a given product [11]. State-of-the-art
methodologies rely on this principle, like the PAIA tool [24] used
by manufacturers to provide the Product Carbon Footprint (PCF)
associated with their products, or more recently the methodologies
described by Malmodin et al. [22] and Li et al. [19].

Because of the obvious hardware scale difference, distinct method-
ologies are used for the servers and the Raspberry Pi.

2.2.1 Servers. Given the lack of detailed LCAs for every model, we
approximate the server embodied carbon (Gggp) by isolating the
impact of major computational and storage components (Grcs +
Ggpp) from a baseline representing common elements (Gcommon):
GFab = GCommon *+ GIcs + GHDD

As shown in Table 1, Geommon is estimated at 204.9 kg COge
using data from the Dell R740 LCA [8] for parts like the chassis,
PSUs, and cooling. We thus assume these common contributions
are consistent across the servers studied. This approach, while in-
troducing some uncertainty, enables a focused comparison based on
the variable high-impact components like processors and memory.

Table 1. Estimated GWP for common server components

Component GWP (kg COze) Note

Chassis 34.0 From R740 [8]

Mainboard 128.5 From R740 [8], where the share
of CPU (26.6%) is removed

PSU 31.3 From R740 [8]

Cooling 11.1 From R740 [8]

Subtotal 204.9

To account for the various characteristics of the main components
(Processors, Memories, Storage) of the servers, a streamlined estima-
tion technique has been used, as defined as Gcomponents = 2 Xi - Ki,
where X; are the physical characteristics of components such as the
die area or technology node for CPUs and GPUs, or the capacity in
GB for memories and storage; each characteristic being associated
with a K; scaling factor that, depending on the the type of compo-
nent, converts this area into embodied carbon equivalent as detailed
in [13, 22, 28]. The carbon estimates for the three types of servers is
detailed in Table 2.
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It should be noted that the SSD is a major contributor to the global
GWP of the fabrication for the latest server (QCT) and may require
special attention in terms of estimation accuracy. The methodol-
ogy in [13], which uses the same proportional factor across all SSD
technologies, may be too imprecise for this type of device. Improve-
ments in flash technology, particularly 3D NAND, have led to a
smaller carbon footprint per GB, as demonstrated in [35]. Using the
more precise estimation described in this latter study, a value of
444.9kg COqe is determined. Compared to the 633.6 kg COze used
in Table 2, the difference is significant but the total carbon footprint
of the server remains in a comparable range.

Table 2. Embodied carbon estimates for sub-elements of computing devices
in kg COze

Item QCT HPE Dell | Quantity K factor
Year 2024 2015 2015
Common 204.90 204.90 204.90 | See Table 1
HDD 96.00 4x1.2TB 0.02kg COze/GB [28]
SSD 633.60 5.76 TB 0.11kg COze/GB [13]
286.00 | 2.6 TB 0.11kg CO2e/GB [13]
GPU 11.88 8.14cm?, 4nm 1.46 kg COqe/cm? [5]
CPU 11.30 7.74cm?, 4nm 1.46 kg COqe/cm? [5]
3.06 3.56cm?,22nm | 0.86 kg COze/cm? [5]
4.53 | 2x2.46 cm?, 14 nm | 0.92 kg COze/cm? [5]
RAM 139.20 480 GB, LPDDR5 | 0.29 kg COe/GB [13]
23.04 96 GB, HBM3 0.24 kg CO2e/GB [13]
37.12 128 GB, DDR4 0.29 kg COze/GB [13]
18.56 | 64 GB, DDR4 0.29kg CO2e/GB [13]
Total  1023.92 345.22 513.99 |

As a point of comparison, the study from Loubet et al. [20] in-
cludes the LCA of a Dell low-end Server (Dell 3620) and high-end
server (Dell 7920) with respective embodied carbon of 767.1 kg COze
and 280.8 kg COze, which are similar to our estimates.

2.2.2  Raspberry Pi. The form factor, size and computing power of
the single board computer (SBC) being different, the same methodol-
ogy is not suitable to estimate embodied emissions. State-of-the-Art
provides an assessment of the carbon footprint of the Raspberry Pi
4B [20], with an estimation of 14.3 kg COge.

2.3 Carbon Topography Representation

Depending on the load of the server and on the Carbon Intensity of
Electricity (CIE) where task execution takes place, the total server
carbon footprint varies significantly. To address this disparity, we
propose a 2D representation of our results, called Carbon Topog-
raphy Representation. The x axis abstracts the load imposed on
the server, and the y axis represents the quantity of carbon emitted
per kWh. The absolute total server carbon footprint in kgCO,e is
displayed in black contour lines, but another aspect is how this
carbon is attributable among the three types: Static consumption,
Dynamic consumption and Fabrication. Using a color gradient, we
superimpose this information in the same figure as explained in Fig-
ure 2. We further superimpose white contour lines showing where
each type of consumption contributes more than 50 and 75 % in the
total Global Warming Potential (GWP) of the HUT.
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Figure 3 shows total carbon footprints for the count service (top)
and the Al service (bottom) of the four platforms.

When applied to our measurements, the x axis becomes the num-
ber of requests per second. For each machine, the service load ranges
from 0 (Idle) to the maximum achievable load, beyond which not all
requests are being served.

On the y axis is the CIE which ranges from 0 (carbon neutral
electricity) to 800 kg CO2e/kWh (most emitting electricity mixes).
Low carbon countries like Switzerland or France are in the 30-
60 kg CO2e/kWh range, while China is around 500 and the US,
where most of the largest data centers are located!, is around 400
with a large variation depending on the state (from 30 to 860)2.

Dynamic power4100% dynamic

0% fabrication

Fabrication

Static power
100% fabrication 0% dynamic

100% static

China

USA  Germany Spain  France Switzerland

Fig. 2. (Left) Ternary color plot used in our Carbon Topography Represen-
tation, showing the shares of fabrication (blue), static power (red), and
dynamic power (green) in a cloud service’s total carbon footprint, across
request rates up to the server’s maximum capacity.

(Right) Electricity carbon intensity (g CO,e/kWh) in countries with high
(e.g., China) and low (e.g., France, Switzerland) carbon electricity.

In this ternary representation form, each point in the 2D graph
has a RGB color indicating the relative contribution to the carbon
footprint associated with Fabrication (blue component), Static power
consumption (red component) and Dynamic (i.e. load-related) con-
sumption (green component). Note that RGB components sums up
such that R+ G + B = 100%. As a result, on the upper left corner of
each graph, the red patch shows the role of the static power usage
of the HUT, mostly visible at low load levels; as we move to the
upper left to the upper right corner, the color might turn to green
as the dynamic power increases with load. Finally, blue is mostly
visible at the bottom : low CIE makes fabrication dominant in the
carbon impact.

The rationale behind this representation is that analysing the
complex interplay between server utilisation, grid carbon intensity
and the resulting carbon footprint requires a holistic visualisation.
While standard charts such as bar graphs can provide a precise
breakdown of a single operating point, they cannot easily reveal
overall trends and transition boundaries across continuous two-
dimensional parameter spaces.

Carbon Topography Representation addresses this issue. Its pri-
mary purpose is to function as a ‘map’ of a server’s carbon profile,
allowing for the immediate identification of operating ’regimes’
where fabrication, static power, or dynamic power is the dominant
contributor. The boundaries between these regimes are quantita-
tively defined by contour lines. Although a ternary color gradient is
used as a qualitative guide to identify these regimes, we recognize

! According to information from https://www.webopedia.com/technology/10-biggest-
data-centers-in-the-world/ 2025-04-01

2According to data available from https://app.electricitymaps.com/map/12mo/monthly
2025-04-01
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Fig. 3. Carbon Topography Representation of server carbon footprint for the count (top) and Al (bottom) services. Total carbon footprint is broken down into
Static power (Red), Dynamic power (Green) and Fabrication (Blue). White contour lines provide break-even points (50%), and black contour lines gives the

total carbon footprint of the service in absolute value over its lifespan.

its limitations for precise interpretation and for viewers with color
vision deficiencies. Therefore, the key analytical features of this rep-
resentation are the contour lines that delineate where each impact
category contributes more than 50% and 75% of the total, providing
a clear and accessible view of the trade-offs. This representation is
designed to provide high-level strategic insights, which can then be
complemented by detailed quantitative analysis of specific points
of interest, as demonstrated by the bar charts in Section 3.

3 PARAMETER DEPENDENCIES OF TOTAL SERVER
CARBON FOOTPRINTS

3.1 Insufficient Power Load Scaling

The representation underlines significant variations in carbon attri-
bution profiles across different servers. Indeed, the share of dynamic
power consumption is very different from one type of device to
another, as shown by the distribution of the red and green areas.
Even for HPE and Dell servers in Figure 3, which share the same
x86-64 architecture and belong to a similar technological generation,
the operational phase exhibits different energy efficiency patterns
and can be caused by various reasons [32]. Notably, the red color
dominance in the representation shows that load does not substan-
tially alter power usage for QCT and Dell servers, especially for the
count service. Similarly, the Raspberry Pi platform demonstrates
only a moderate load-dependent effect on its carbon footprint. The
HPE server, however, displays a pronounced dynamic power contri-
bution, exceeding 50% under high load, especially for the AI service.

This shows that the 2007 observation by Barroso and Holzle [2]
that servers, unlike handheld devices whose power consumption
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scales dynamically with computational demand, are primarily opti-
mised for peak performance, still seems valid. While some applica-
tions operate continuously near saturation, other services experi-
ence significant workload fluctuations. In order to satisfy customer
demand despite the cost and environmental impact, hardware in-
frastructures to deliver those services are often designed for the
worst case, i.e. for the highest demand. Apart from these moments
where the load is maximal, in our representations, the dominance
of the red areas (static operational carbon) directly reflects the high
static power consumption measured for these servers.

3.2 Carbon Optimization Strategies

Among available strategies to reduce the carbon footprint of a digi-
tal service is the prolongation of the computing device in order to
spread the impact of fabrication over a larger period of time [7, 30].
Using our representation, as Figure 3 shows, apart from locations
where CIE is low (below 100 g COze/kWh), fabrication (blue ar-
eas) does not represent a major GWP contributor for the studied
servers.This means that lifetime extension is not an efficient ecode-
sign strategy when using highly carbonated electricity, where GWP
is dominated by the impact of electricity usage (red and green areas).

3.2.1 Lower the CIE. Instead, a first priority in carbon-intensive
electricity locations is to reduce the CIE [10]. Figure 5a exhibits
the breakdown of GWP for a given server (HPE) and service (Al
inference) at various loads for different hardware lifetime values.
The results have been attributed per request (in pg COze) to reflect
the environmental cost of the service usage.

The figure shows that even with moderately carbonated electricity
(400 g COze/kWh), electricity consumption is the main contributor
to GWP of the service, whatever the load of the server. When the
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Fig. 4. Focus on low carbon electricity scenarios (0 to 100 g COze/kWh for QCT (left) and HPE (right) servers with hardware lifetime of 5 and 10 years. At low
CIE, the service GWP is highly impacted by hardware fabrication (blue). Extending the lifetime to 10 years mitigates the contribution of manufacturing in the
total carbon footprint.

server is close to idle state, static power drains a major share of 4 FUTURE DIRECTIONS
GWP. On this same figure, the influence of the extension of the
lifetime of the hardware device is negligible. This is due to the low
contribution of fabrication in the total GWP.

The findings from this study need to be consolidated, particularly
with regard to the hardware platforms used in our experiments.
To cover a wide range of machines, we applied our methodology
to recent, powerful hardware (QCT), legacy standard servers (Dell
and HPE), and low-power platforms (Raspberry Pi). We also used
mix is illustrated in Figure 5b, showing the breakdown of GWP different hardware architectures (ARM for QCT and Raspberry Pi,

among fabrication, static and dynamic power the same HPE server and x86_64 for Dell and HPE). However, it would be insightful to run
running the same service with a lower CIE (50 g CO2e/kWh). As

shown by absolute values, switching to an 8x less carbonated elec-
tricity reduces the impact of each request by at least a factor 4. The
share of fabrication in the total GWP is raised, and extending server
lifetime becomes a relevant solution to decrease the carbon foot-
print of the service, which is visible in Figure 5b with a reduction
between 17 and 27 % per request when extending the lifetime of the
server from the original 5 years to 10 years.

This is also illustrated in Figure 4, which focuses on CIE below
100 gCO,4e/kWh, showing the dominance of fabrication contribu-
tion to the total carbon footprint of devices. Furthermore, it shows
how device lifespan affects the environmental impact of the service,
enabling a side-by-side comparison of a 5-year lifespan to 10-year
scenario.

3.22  Device Lifetime. The impact of low carbon electrical energy

the experiment on a larger variety of recent platforms to confirm
that our findings are relevant to contemporary servers.

The concern for high idle power should be investigated further,
particularly in relation to system configuration. Identifying the pa-
rameters that lead to better power optimisation could help to reduce
the carbon footprint of servers. Particular care should be taken to
consider the impact of power-saving tuning on responsiveness when
switching from idle to processing mode when new requests are re-
ceived, since deeper sleep states can increase the delay required to
start processing a new task.

Our representation focuses only on the carbon footprint of a
service. This is due to the current strong focus on global warming
in the academic world and in the industry. Despite the concerning
aspects of global warming, other environmental aspects must be
studied. For example, an interest is growing about water usage [23].
Large quantities of water are used for electronic devices fabrication,
but also for electricity production. The same type of study could
be developed on the topic of water. However, contrary to carbon
impact which has been well documented in the last decade, infor-
mation about water usage is scarce, which makes the investigation
challenging. This issue is even more pronounced regarding minerals
usage, where almost no public information is disclosed.

While this analysis focuses on the environmental impacts of com-
putation within cloud services, these services depend on more than
just CPU platforms. Other contributors to the overall environmen-
tal footprint of data centers include: cooling systems [18], which
consume a substantial fraction of total energy and often utilize fluo-
rinated gases [31] with high GWP; data storage, where the exponen-
tial growth in capacity demand, particularly for SSDs [35], increases
the silicon manufacturing impact; and the network infrastructure
required, which also adds to operational energy consumption [25].

3.2.3  Device Efficiency. Relying on more energy-efficient platforms
presents another option to diminish service carbon emissions. While
newer servers might intuitively offer better efficiency, as suggested
by Dennard scaling [9], this is not always true under all operat-
ing conditions. For instance, transitioning from older HPE (2015)
to recent QCT (2024) hardware at the same request rate led to an
increased GWP (Figure 5c¢). Although QCT servers provide higher
peak operations per second and demonstrate superior efficiency
at full load (Figure 5d), their significant static power consumption
renders them inefficient under low utilization. Thus, realizing the
benefits of such newer devices mandates operation near maximal
capacity. Moreover, virtualizations techniques and Cloud capacities
can allow better hardware usage factors, thus reducing energy con-
sumption [14, 15]. The concept of a carbon break-even point [13, 16]
helps navigate the trade-off between this load-dependent opera-
tional efficiency and the embodied carbon of new devices, enabling
the determination of an optimal lifetime for maximal carbon effi-
ciency.
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electricity (b) provides the most significant gains; using a more powerful and recent server (c) only provide improvement when used at full capacity (d).

As illustrated by our measurements, there is a need to mitigate en-
ergy consumption of data centers during periods of low utilization.
One solution involves refining techniques for dynamically powering
down idle servers or components, considering the potential impacts
on service responsiveness. Furthermore, exploring the adoption of
more energy-proportional hardware architectures should be con-
sidered. Processors inspired by mobile device designs, which often
scale power consumption more effectively with computational load
than traditional server CPUs, could offer significant energy savings
if adapted successfully for data center workloads and performance
requirements.

5 CONCLUSION

The carbon topography representation proposed in this paper pro-
vides a valuable tool for analyzing server carbon footprints, par-
titioning impacts from fabrication, static operational power, and
dynamic load-based power using experiments and LCA across var-
ious loads and grid carbon intensities. Using this representation,
we find that operational energy, particularly high static consump-
tion due to limited energy proportionality in current hardware,
dominates the footprint unless powered by low-carbon electricity.
Consequently, accessing low-carbon grids is the primary mitiga-
tion strategy to be deployed on existing servers. The representation
framework illustrates the conditions under which hardware lifetime
extension becomes relevant: impacts and lifetime extension become
significant factors only under such low-carbon conditions. How-
ever, the prevalence of static power waste, especially at low loads,
highlights a need for future server hardware with improved energy
proportionality and dynamic power scaling, potentially inspired
by mobile architectures. Achieving sustainable digital infrastruc-
ture fundamentally requires advancements in hardware efficiency
alongside decarbonized energy and optimized life-cycles.
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