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The wide deployment of AI datacenters has led to an increasing demand

for energy. Recently, there have been developments in the area of reference

cooling temperatures in datacenter server rooms, with the aim of avoiding

the setting of excessively low temperatures to save energy. For example, the

recommendation in Singapore is [28◦C–32◦C] for level 4 datacenters, while

the European Union code of conduct for datacenters suggests a temperature

of 35◦C. These standards were carefully tested to satisfy overall cooling

requirements, yet we observe in this paper that there is a risk that, in certain

scenarios, the heat that is dissipated may not match the heat generation of

GPUs, especially for high-performance workloads such as LLM inference.

Such a mismatch can lead to an increase in the temperature of the GPU and

trigger its thermal-throttle mechanism. The GPU frequency will decrease

in self-protection from the damage due to overheating and performance

degradation. As such, the issue of cooling regulation poses challenges to

high-performance computing in AI datacenters. In this paper, we study LLM

inference serving in cooling-regulated datacenters. Specifically, a datacenter

serves millions of LLM inference jobs. To maximize the throughput, a work-

load scheduler (e.g., Ray Serve) assigns the jobs to GPUs and determines the

execution batch sizes on GPUs. We show that in cooling-regulated datacen-

ters, existing schedulers can increase the probability of thermal throttling

by 10 times, and the performance degradation can be as much as 34.2%. We

develop a new thermal-aware workload scheduler, TAWS, which takes into

consideration the GPU voltage and frequency. Our scheduler can maximize

the throughput of LLM inference under a relatively high ambient tempera-

ture in datacenter server rooms. The evaluation results show that the new

scheduler can lead to a maximum improvement of 40.94% of throughput

under 41◦C.
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Hardware→ Power and energy; • Information systems→ Data centers;

• Computing methodologies → Artificial intelligence.
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1 INTRODUCTION

Recently, there has been a rapid deployment of AI datacenters to

support the growth of AI applications such as large language model

(LLM) services [21, 40]. TheseAI datacenters consume huge amounts

of energy [7, 13, 29, 33]. In AI datacenters, the cooling infrastructure

consumes 35% of energy [44, 52]. Setting a low temperature in

the server rooms will significantly increase energy consumption.

Thus, we see that reference standards have been developed which

try to support the performance of the datacenter while avoiding

overcooling [18, 51]. As an example, a recent Singapore standard

refined the ASHRAE standards [46]. It classified datacenter into four

levels with reference temperature setpoints, e.g., inlet-air for level 4

is 28–32◦C as compared to traditional settings of 25◦C . It has been

shown that an increase of 1◦C can reduce the cooling energy by

8% [6].
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However, with such cooling regulations, the heat dissipation

capacity of the cooling infrastructure is reduced. Although the ref-

erence standards were carefully tested to satisfy the overall heat

dissipation requirement for general scenarios, there is a risk that

the heat removal may not match the heat generation of GPUs in cer-

tain scenarios, especially for high-intensity computing workloads

such as LLM inference serving. Such a mismatch can lead to an in-

crease in the GPU temperature. This can trigger the thermal-throttle

mechanism of GPUs [24, 49], i.e., the frequency and voltage will

automatically decrease to self-protect against the potential damage

of overheating. This introduces challenges for high-performance AI

computing in cooling-regulated datacenters.

In this paper, we study LLM inference serving in AI datacen-

ters. Specifically, a datacenter serves millions of LLM inference

jobs. To optimize system performance on throughput [30, 43], the

GPU utilization [39], and service level objectives [28, 53], workload

schedulers have been developed. For example, the Ray Serve [43]

scheduler assigns LLM inference jobs to a fleet of GPUs and de-

termines the batch size to execute the jobs on each GPU, with the

intention of maximizing the throughput in terms of tokens per

second.

All existing schedulers implicitly assume that the heat dissipation

capacity is sufficient to manage the heat generated by GPUs [19, 27,

43, 56]. However, we show that in cooling-regulated datacenters, this

assumption fails and the performance of LLM inference decreases.

Thus, we develop a new thermal-aware scheduler, TAWS, for high-

performance LLM inference in cooling-regulated datacenters.

We take thermal dynamics as an explicit optimization dimen-

sion. First, we construct analytical models for GPU heat generation,

thermal-throttle behavior, and multistage cooling efficiency. Using

these models, we pose an optimization problem that maximizes sys-

tem throughput (tokens per second) by jointly selecting inference

job allocation and per-GPU dynamic voltage–frequency settings,

while accounting for ambient temperature and its impact on heat

dissipation. To address the problem online, we introduce TAWS, a

reinforcement-learning scheduler that adapts decisions in real time.

In the evaluation, we simulate GPUs under an air-cooling system

and a water-cooling system for LLM inference serving and establish

a controlled cooling-regulated environment with distinct ambient-

temperature setpoints. We show that in some cases the heat removal

of the cooling infrastructure may not match the heat generation of

GPUs in cases, and that the throughput of the LLM inference can

decrease by as much as 34.2%. We implement TAWS on a mixed

cluster of RTX 3090 and RTX 4090 GPUs and integrate it with the

vLLM runtime. Our experiments at various ambient temperatures

show that TAWS eliminates throttling events and restores up to

32.62% of lost throughput, while reducing cooling energy by 17.46%

and 18.61% relative to the conventional overcooled baseline.
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Fig. 1. The cooling systems for AI Datacenters.

2 BACKGROUND AND RELATED WORK

The heat generation of the GPUs and the thermal-throttle

mechanisms:When performing computing operations, the GPU’s

switching elements toggle at a high frequency, and the electrical

power converts to heat. The magnitude of heat generation depends

on the frequency and voltage of the core. Heat generation also

depends on the manufacturing technology of GPUs [16, 47], e.g.,

the recent 5nm GAAFET tends to trap more heat internally than

7nm FinFETs, which can be profiled for different types of GPUs.

Heat accumulates, and if the heat that is generated exceeds the

heat that is dissipated, the temperature of the GPUs will increase.

High temperatures can damage the hardware. There is a thermal

limit, the temperature at which GPUs will trigger self-protective

measures to decrease their core voltage and operating frequency.

This is called the thermal throttle mechanism [5]. When the voltage

and frequency decrease, the heat that is generated will decrease. It

will continue decreasing until the temperature is less than the ther-

mal limit. The performance of the GPUs will also decrease. While

thermal throttling is necessary to maintain hardware reliability, it

limits GPU performance. Specifically, low voltage and frequency

will slow the clock cycles of the computing units and degrade the

computing performance. In some scenarios, e.g., if the temperature

rises quickly, the clock cycle decreases fast, and this can lead to a

CUDA kernel watchdog timeout. As a consequence, the CUDA dri-

ver would reset [37] and clear the VRAM data. For example, NVIDIA

H100 has a shutdown temperature limit at 95◦C, which will trigger

the core rebooting and VRAM clearance [1]. In LLM inference, this

leads to data reloading [34] and LLM inference operations stalling.

The heat dissipation of datacenter and the cooling regu-

lations: The heat dissipation of a datacenter is shown in Fig. 1.

There is a Computer Room Air Conditioner (CRAC) system to air-

condition the server room, and there is an Inner Cooling System

(ICS) to cool the servers [41]. Specifically, the external CRAC system

will air-condition the air that will be sent to the server room. This

inlet air sets the ambient temperature of the server room. The ICS

system will use coolers (air or liquid) to cool the server’s GPUs. The

heat of the GPUs will be absorbed by the coolers and removed from

the GPUs. The coolers will then circulate in the server room, and

the heat will be dissipated in the ambient environment of the server
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Fig. 2. Thermal Throttle and Data Reloading in Inference Serving

room. Finally, heated air will be circulated out to the CRAC system

of the server room.

In a datacenter, the dominant energy consumers are the CRAC sys-

tem (30-40%) and the servers/GPUs (50-60%) [9, 12, 14, 15], whereas

the energy consumption of the ICS system is less of a concern. Ambi-

ent temperature control is important for datacenters. A low ambient

temperature can allow the coolers of the ICS to have a greater heat

removal capacity; thus, reducing the probability of triggering the

thermal throttle mechanism. As the performance of the GPUs is

crucial, datacenters have an incentive to set unnecessarily low ambi-

ent temperatures. However, overcooling leads to a significant waste

of energy. As a result, government and industry have developed

guidelines for the ambient temperature settings of datacenters. For

example, the ASHRAE guidelines advise that the inlet air should be

27◦C [8]. The European Union Code of Conduct for Data Centers

suggests a temperature of 35◦C to avoid overcooling and to save

energy [2, 3]. Recent research shows that increasing the ambient

temperature to 41◦C can maximize energy savings [55] without a

serious impact on the lifespan of hardware.

Although the reference ambient temperatures were carefully stud-

ied and could satisfy the overall heat dissipation requirements, a

higher temperature would lead to a higher probability of triggering

the thermal throttle mechanisms. In this paper, we study LLM infer-

ence services in datacenters and show that the negative impact on

the performance can be non-trivial.

Workload scheduling for LLM inference servicesWorkload

scheduling is an important research topic in datacenters. There

are cluster-level [43, 48], single-GPU-level [30], real-time [10, 11,

43], day-ahead [4, 19, 27] schedulers with the objectives on system

utilization [39], throughput [30, 43], service level objectives [7, 28,

53], energy [27, 42, 48], carbon [4, 10, 11, 19], and other objectives.

As a first study, we look into LLM inference schedulers and study

the scheduler that maximizes the throughput of tokens. We believe

that our observation on the mismatch between heat dissipation that

is dissipated and the heat that is generated in cooling-regulated

datacenters can also lead to a review of other schedulers. We leave

that to future works.

3 MOTIVATION

We perform an experiment to demonstrate how cooling-regulated

datacenters can activate GPU thermal throttling. We emulate a

cooling-regulated ambient environment. The key is to fix the tem-

perature of the inlet air. This emulates the cooling regulation and

also restricts the heat dissipation capacity of the ICS.
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One challenge is that the temperature changes dynamically. Thus,

we need to detect the change and then control it in real time. To de-

tect temperature changes, we utilize a PT100 resistance temperature

detector to continuously measure the temperature of the inlet air,

and to control the temperature, we develop a closed-loop controller

to precisely control the temperature to the target setpoints.

We conduct our experiment on an air-cooled NVIDIA RTX 4090.

We set the inlet air temperature to {28◦C , 31◦C , 34◦C , 37◦C , 41◦C }.

The inference workload is Llama 3-8B [32] quantized to four bits.

Suchworkloads allow theGPU to operate at its peak capacity.We use

various prompts from IBM’s Text Generation Inference Server [20],

and record throughput, power, and temperature. The experiment

lasts 10 hours for each distinct setpoint.

We first analyze the possibilities of the triggered thermal throttle

among different setpoints; see Fig. 2(a). Thenwe conduct an in-depth

study to determine the impact of the throughput, see Fig. 2(b), and

try to explain the reason.We have three main observations. First, the

probability that the RTX 4090 enters thermal throttle mode increases

steadily with the ambient set-point, climbing from 1.5% at 28◦C to

15.3% at 41◦C , about 10 times. Second, once throttling is activated,

the GPU clock is reduced, and a protective reset removes the model

weights and the KV cache, forcing them to be reloaded. Inference

throughput, therefore, drops while GPU power falls, and a longer

recovery interval is then required. We observe that the GPU requires

taking a great proportion of time to recover in Fig. 2(a), which will

lead to a 34.2% reduction in throughput. Third, the combined effect

is a noticeable decrease in inference throughput, confirming that

higher ambient temperatures degrade LLM performance through the

thermal-throttle mechanism and trigger data reloading in GPUs, as

shown in Fig. 2(b). The fundamental reason is that this overheating

temperature triggers thermal throttling, which reduces the core

and memory clocks. CUDA kernel runtimes breach the watchdog

timeout, forcing a CUDA driver reset, wiping model weights and

KV cache, compelling frameworks to reload everything, and stalling

inference.

4 SYSTEM MODELS AND THE PROBLEM

4.1 System Modeling

4.1.1 Heat Generation Model of GPU. As the temperature of a GPU

is dynamic during operation, we model the thermal temperature

𝑇𝐺𝑖 (𝑡) of the GPU g𝑖 at time 𝑡 as follows:

𝑇𝐺𝑖 (𝑡) = 𝑇𝐺𝑖 (𝑡 − Δ𝑡) +
[ �𝑄𝐺𝑖 (𝑡) − �𝑄𝑅𝑖 (𝑡)] · Δ𝑡

𝑚𝑖 · 𝑐𝑖
, (1)

where𝑇𝑖 (𝑡) depends on the last sample temperature𝑇𝐺𝑖 (𝑡−Δ𝑡) with
interval Δ𝑡 , the heat generation rate �𝑄𝐺𝑖 (𝑡), and the heat dissipation
rate �𝑄𝑅𝑖 (𝑡), i.e., the total heat dissipated from the substance, subject

to the heat capacity of this substance, i.e., the increase in temperature

of this substance given a certain amount of heat injection. Here,𝑚𝑖

is the mass and 𝑐𝑖 is the heat capacity. Here, the heat generation rate
�𝑄𝐺𝑖 (𝑡) is approximated to the power consumption 𝑃𝑖 of the GPU

g𝑖 according to the first law of thermodynamics [22]. According to

the power model in [23], 𝑃𝑖 (𝑡) can be modeled as a function of its
core frequency 𝑓𝑡 and voltage 𝑣𝑡 as:

�𝑄𝐺𝑖 (𝑡) ∼ 𝑃𝑖 (𝑡) = 𝛼𝑖𝑣𝑡 + 𝛽𝑖𝐶𝑖𝑣
2
𝑡 𝑓𝑡 + 𝑃𝑐𝑖 (2)

Here,𝐶𝑖 is the gate capacitance of the GPU. 𝑃𝑐𝑖 is the constant power
caused by peripheral components. 𝛼𝑖 , 𝛽𝑖 depend on the specific LLM
layer structures required to be profiled, using modern deep learning

frameworks, such as PyTorch Profiler and TensorFlow Profiler.

GPU under Thermal Throttle.When the GPU reaches its maxi-

mum allowable temperature, i.e., the thermal throttling point 𝑇𝑇𝑖 ,
its voltage and frequency are restricted to maintain thermal stabil-

ity, ensuring that |𝑇𝑖 (𝑡) − 𝑇𝑖 (𝑡 − Δ𝑡) | = 0. We define the set of all

feasible voltage and frequency pairs under thermal throttling as

T𝑖 (𝑇𝑇𝑖 ) = {(𝑣𝑖 , 𝑓𝑖 )}. By applying Dynamic Voltage and Frequency
Scaling (DVFS) techniques [24], different operational settings can be

selected from T𝑖 to achieve specific objectives, such as minimizing

power consumption or maximizing computational throughput.

4.1.2 Heat Dissipation Model of Cooling Systems. In the inner cool-

ing system, we model two basic kinds in practice, including air

cooling and water cooling. i) Air Cooling: The heat dissipation

rate under air cooling can be formulated as:

�𝑄𝑅𝐴 = 𝜌𝑣𝑎𝐴ℎ𝑠 · 𝑐𝑝 · Δ𝑇, (3)

where Δ𝑇 = |𝑇𝐺 − 𝑇𝐸𝑁𝑉 | is the temperature difference between

the heat sink and the ambient air; 𝑣𝑎 is the air flow rate; 𝑐𝑝 is the
heat capacity of air (∼ 1005 J/kg◦C ); 𝜌 is the density of air (∼ 1.2
kg/𝑚3); and 𝐴ℎ𝑠 is the contact surface area of air flow and heat sink.

ii) Water Cooling: The heat dissipation efficiency of water cooling

depends on the dissipation of water pipes �𝑄𝑅𝑝𝑖𝑝𝑒 based on Fourier’s
law of heat conduction and Newton’s law of cooling [49],

�𝑄𝑅𝑝𝑖𝑝𝑒 = 𝜉𝑣𝑤Δ𝑇 (1 − 𝑒𝑥𝑝 (−𝜇ℎ/𝑣𝑤)) (4)

where Δ𝑇𝐶 = |𝑇𝑊 −𝑇𝐸𝑁𝑉 | is the temperature difference between

the cooling water inside the pipe and the ambient air; 𝑣𝑤 is the

water flow rate; ℎ is the convective heat transfer coefficient of the

air; and {𝜉, 𝜇} related to the radius of the pipe and the density of
water, etc.

4.1.3 Energy Model of LLM Inference. For an LLM inference job,

we model the computing latency 𝑡 of a LLM layer 𝑤 that runs on

the GPU g𝑖 = {𝑣𝑖 , 𝑓𝑖 } as follows:

𝑡𝑤 (g𝑖 ) =
FLOP𝑤

FLOPS(𝑓𝑖 ) · eff 𝑖,𝑤
, (5)

where the computation complexity of layer𝑤 (FLOP𝑤 ) is measured

by floating point operations (FLOPs), eff 𝑖,𝑤 is the hardware effi-

ciency required to profile, and the computing capability of GPU g𝑖
under frequency 𝑓𝑖 is FLOPS(𝑓𝑖 ), counted as floating point opera-
tions per second (FLOPS), which can be formulated as [17]:

FLOPS(𝑓𝑖 ) ∝ 𝑁 𝑖
𝑐𝑜𝑟𝑒 · 𝑓𝑖 · 2, (6)

where 𝑁 𝑖
𝑐𝑜𝑟𝑒 is the GPU core number. As the ICS energy is tiny, here

we assume that it always runs at its maximum power all the time,

but it is ignorable. The overall energy saved during the inference

can be computed as:

Δ𝐸𝑖𝑛𝑓 = Δ𝐸𝐺𝑃𝑈 + Δ𝐸𝐶𝑅𝐴𝐶 . (7)

According to Eq. 2 to Eq. 5, the GPU energy can be obtained by:

𝐸𝐺𝑃𝑈 =
𝑡∑ ∑

g𝑖 ∈𝐺

∑
𝑤∈𝑊

𝑡𝑤 (g𝑖 ) · 𝑃𝑖 (𝑡) (8)

ACM SIGENERGY Energy Informatics Review Volume 5 Issue 2, July 2025
100



Here we assume the ambient temperature in a non-carbon-efficient

AI datacenter to be 25 ◦C , therefore, we define that the power saving

per ◦C from 25 ◦C is 5%.

4.2 The Problem

Given an LLM inference task: an LLM with layers𝑤 ∈𝑊 and avail-

able AI datacenter hardware including GPUs {g1, g2, . . . }, where
each GPU g𝑖 = {𝑣𝑖 , 𝑓𝑖 , 𝑡𝑜 }, Thermal Throttling profiling {𝑇𝑇𝑖 }, Inner
Cooling Systems specifications and increasing ambient temperature

Δ𝑇𝐸𝑁𝑉 in a carbon-efficient value, determine: the GPU job sched-

uler S = {𝑣𝑖 , 𝑓𝑖 , 𝑏𝑖 } at time 𝑡 where 𝑏𝑖 is the batch size, to maximize
throughput 𝑇𝑃 (number of tokens generated per second) for such

a task. The scheduler should limit itself to: 1) The GPU can only

execute in an overheating state (thermal throttle) for a period 𝑡𝑜 . 2)
The extra energy consumed by the GPUs compared to operating

at a carbon-efficient ambient temperature should never exceed the

savings from the CRAC. For example, 1◦C ambient temperature

increasing could at most consume 4% extra energy on computing if

the proportion of energy of the cooling system to GPUs is 35% to

55% [44].

5 THE THERMAL-AWARE WORKLOAD SCHEDULER

Overview: Raising the given ambient temperature by Δ𝑇𝐸𝑁𝑉 can

significantly reduce the CRAC’s energy consumption. However, this

temperature increase also weakens the heat dissipation efficiency

of the ICS, making it more difficult to dissipate heat from the GPU.

As a result, residual heat accumulates, causing the GPU tempera-

ture to rise. Once the temperature reaches the thermal throttling

threshold, the GPU activates its thermal protection mechanism,

reducing the operating frequency, core voltage, and power con-

sumption. Although this prevents overheating, it also degrades the

computing performance of the GPU and increases the latency of

LLM inference tasks. Consequently, the energy consumed per infer-

ence may increase, offset by some of the gains from CRAC energy

savings. Therefore, we develop a Thermal-Aware Workload Sched-

uler (TAWS) based on reinforcement learning.

MDP Formulation. TAWS is first formulated as a finite-horizon

Markov decision process (MDP) [54], 〈S,A,P, 𝑅, 𝐻 〉.

• State 𝒔𝑘 ∈S. At every control step 𝑘 the agent observes

𝒔𝑘 =
[
Δ𝑇ENV, {𝑇𝐺𝑖,𝑘 , 𝑓𝑖,𝑘 , 𝑣𝑖,𝑘 , 𝜏𝑖,𝑘 , 𝑏𝑖,𝑘 }

𝑁
𝑖=1, 𝐸extra𝑘 , 𝐸save𝑘

]
,

where 𝜏𝑖,𝑘 is the estimated time-to-throttle for GPU 𝑖 (Sec. 5).
• Action 𝒂𝑘 ∈ A. The scheduler chooses (i) a subset of GPUs to

execute the next minibatch, (ii) a frequency–voltage pair (𝑓𝑖 , 𝑣𝑖 ) for
each selected GPU, and (iii) the fraction of the batch assigned to

every chosen GPU.

• Transition P. State evolution follows a calibrated thermal model

as shown in Eq. 5.

• Horizon 𝐻 . An episode ends at a fixed number of steps.

Reward and Safety Costs. Throughout𝑇𝑃 , energy saving balance
and hardware safety are merged into a scalar reward

𝑟𝑘 = 𝑎 TP𝑘 − 𝑏 max
(
0, 𝐸extra𝑘 − 𝐸save𝑘

)
− 𝑑 max

(
0, 𝑇𝐺𝑖,𝑘 −𝑇max),

where TP𝑘 denotes tokens-per-second during step 𝑘 . Two auxiliary
cost signals enforce hard constraints:

𝐶
(1)
𝑘

= 𝐸extra𝑘 − 𝐸save𝑘 , 𝐶
(2)
𝑘

= max
𝑖

(
𝑇𝐺𝑖,𝑘 −𝑇max) .

Time-to-Throttle Forecasting. According to the modeling in Eq. 1 to

Eq. 5, we can estimate the time 𝜏𝑖,𝑘 required for a GPU g𝑖 to reach its

thermal throttling temperature𝑇𝑇 at time 𝑡 under a given inference
workload as follows.

𝜏𝑖,𝑘 =
𝑇𝑇 −𝑇𝐺𝑖,𝑘

| �𝑄𝐺 (𝑘) − �𝑄𝑅(𝑘) |
·𝑚𝑖𝑐𝑖

Safe Policy Optimization. We employ Constrained Policy Opti-

mization (CPO) to maximize the expected discounted return while

guaranteeing energy and thermal limits.

max
𝜋𝜃

E𝜋𝜃

[ 𝐻∑

𝑘=1

𝑑𝑘 𝑟𝑘

]
s.t. E𝜋𝜃

[ 𝐻∑

𝑘=1

𝐶
(1)
𝑘

]
≤ 0,E𝜋𝜃

[ 𝐻∑

𝑘=1

𝐶
(2)
𝑘

]
≤ 0.

At every update, CPO solves a quadratic program that projects the

vanilla policy gradient step onto the feasible set defined by the

linearized constraints, delivering first-order safety guarantees.

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation

Implementation of Inference Task Workload Allocation.We

establish the Thermal-Aware Workload Scheduler based on the Ray

Serve [43] and vLLM [30] pod architecture, deploying a Python

DVFS sidecar that interfaces with the NVIDIA Management Li-

brary [35][36] on each allocated GPU. During container initializa-

tion, the sidecar retrieves the GPU handle and sets graphics and

memory clocks to 1650MHz and 1313MHz using nvmlDeviceSetAppl
icationsClocks, while capping board power at 500W through

nvmlDeviceSetPower ManagementLimit. Runtime metrics such as
SM_ACTIVE, POWER_USAGE, and temperature are streamed each sec-
ond through a DCGM exporter [38] for status scraping. A rule en-

gine samples utilization and chooses the next frequency and voltage

setups. The NVIDIA persistence daemon preserves these settings

across process restarts, and comprehensive NVML exception han-

dling restores the last clocks if any command is rejected.

Implementation of TAWSA. Our RL workflow starts with of-

fline calibration: one week of logs (GPU temperature, power, job

arrivals) yields parameters 𝐶𝑖 , ℎ𝑖 . A simulator reproduces these dy-

namics, adding bursts and up to 15◦C ambient changes per episode.

GPUs become nodes in a connected graph. Their temperature, fre-

quency, voltage, time-to-throttle, and batch size pass through a

two-layer GCN [26] whose output feeds an MLP actor–critic [31].

Training uses Proximal Policy Optimization [45] with a clipping

coefficient of 0.1, an entropy bonus of 0.01, and a discount factor

𝛾 = 0.995. Each policy update covers 8000 simulation steps, divided
into mini-batches of 512, and is optimized with Adam [25] at a learn-

ing rate of 3 × 10−4. The policy converges within five hours on two

RTX 4090.

6.2 Evaluation
6.2.1 Evaluation Setups.

Testbeds.We evaluate the Thermal-aware Workload Scheduler on
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Fig. 3. Average throughput under distinct ambient conditions.
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Fig. 4. Overall energy saving under distinct ambient conditions.
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Fig. 5. Runtime temperature of TAWS on RTX 4090 featured with air-cooling

and water-cooling in 41◦C ambient during LLM inference.

a workstation that features an Intel Core i9-13900K CPU and 64GB

of RAM. The system has two GPU models: RTX3090 and RTX4090,

with standard air cooling denoted RTX3090-AC / RTX4090-AC and

water cooling RTX3090-AC / RTX4090-WC.

LLM Inference Tasks.We implement a representative small-scale

LLM: Llama3-8B [32], quantized into 4-bit. Larger models were

intended to be excluded because the bottleneck onboard memory of

our test GPUs would limit full utilization of their compute units and

constrain the admissible batch size to at most one or two sequences.

We adopt a diverse set of prompts from IBM’s Text Generation

Inference Server [20] to emulate production-level workloads and

capture realistic usage patterns for LLM inference services.

Ambient Configuration.We configure the ambient environment

in five levels, including {28◦C , 31◦C , 34◦C , 37◦C , 41◦C }. To

isolate the effects of CRAC, the workstation is installed in a 2m×2m

environment served by a central air conditioning unit. The ambient

temperature is continuously verified with a calibrated sensor to

ensure that it remains within the prescribed limits. To emulate

elevated ambient conditions with high precision, we deploy PT100

resistance temperature detectors that continuously monitor the inlet

air and feed a closed-loop controller, which adjusts the ICS settings

to maintain the desired temperature profile.

Baselines.We compared TAWS with three alternative strategies. i)

Plain. The scheduler uses the default workload allocation of vLLM

with no temperature feedback. When the GPU hits its throttle limit,

the firmware lowers frequency and voltage, yet operation continues

near that critical temperature, exposing the hardware to potential

long-term damage. We include this unsafe configuration solely as a

worst-case reference; it is not used in production. ii) Greedy-Pause.

When GPU temperature hits the throttle limit, the scheduler pauses

inference until the device cools to a preset resume temperature, then

continues execution. iii) Simulated Annealing (SA). A simulated

annealing controller proactively tunes frequency, voltage, and batch

size as the throttle point approaches, trying to keep temperature

below the limit while maintaining throughput.

Metrics. Performance is quantified as throughput, measured by gen-

erated tokens per second. We also record the proportion of the total

energy consumption saved for each experimental configuration.

6.2.2 Evaluation Results. Fig. 3 shows the average inference through-

put of all baselines on RTX 4090 and RTX 3090 across a range of ambi-

ent set-points. Under air cooling (Fig.,3(a)) on RTX 4090, throughput

at 28◦C remains stable because the GPUs can operate below their

thermal throttle within the heat dissipation capability. However,

once the inlet temperature rises to 31◦C , every baseline experiences

a noticeable decrease. Here, TAWS outperforms Plain, Greedy-pause,

SA, 24.53%, 31.29%, 19.63%, respectively, with its advantage peak-

ing at 41◦C . Plain suffers because it continues running near the

thermal limit, reducing effective compute frequency; Greedy-pause

wastes inference time while waiting for the device to completely

cool, although it sheds heat quickly. Compared with the RTX 4090,

the RTX 3090 shows a smaller relative drop due to the denser 5

nm process of the RTX 4090. Even so, TAWS can outperform Plain,

Greedy-pause, SA, 8.79%, 32.62%, 29.01%, respectively, in 41◦C . In

Fig. 3(b), a similar trend emerges, but throttling does not begin un-

til the temperature exceeds 34◦C . The higher heat capacity and

conductivity of water delay the onset of thermal limits by carrying

heat away from the chip more effectively than air. At 41◦C , the

TAWS on the RTX 4090 again leads Plain, Greedy-pause, SA, and

the remaining baselines by the largest margin, 8.79%, 32.62%, 29.05%,

respectively, confirming that our TAWS remains beneficial even

when a superior inner cooling system is deployed.

Fig. 4 compares the total energy-saving ratio of all schedulers,

with both GPUs and cooling electricity included. Raising the ambient

set-point boosts savings for all baselines because the chiller load

falls, but TAWS yields the greatest benefit at every temperature.

By avoiding thermal throttling, it shortens the inference time, so

the integral of power over time drops sharply. At the highest inlet

temperature, TAWS reduces the total energy by 17.46% under air

cooling and 18.61% under water cooling. The results also show the

larger efficiency potential of water-cooled inner loops, indicating

that future AI facilities can unlock even deeper savings by pairing

advanced water cooling with thermal-aware scheduling. As such, in

an AI datacenter with 10,000 A100 cards in West Virginia [50], the

CO2 saved per year is about 6,000 tons if the ambient is set to 41
◦C .
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Fig. 5 shows that during inference, TAWS adaptively controls the

frequency, voltage, and batch size of the RTX 4090 GPU under the

air-cooling system and the water-cooling system in 41◦C ambient

temperature. We observe that water cooling has less average tem-

perature stress than air cooling. Water cooling reduces the average

GPU temperature by about 10◦C and caps the peak at about 83◦C .

Air cooling, on the contrary, oscillates between 75◦C and 94◦C and

triggers the throttle threshold more frequently. The thermal swing

under water cooling remains within ±5◦C , while air cooling sees

±9◦C . Consequently, TAWS has higher throughput and saves more

energy. These results confirm that stronger inner cooling provides

extra heat dissipation capacities, allowing TAWS to hold higher

frequencies to avoid thermal throttling, compared to air cooling.

7 CONCLUSION AND FUTURE WORK

In this paper, we studied cooling-regulated datacenters, where the

cooling temperature of datacenter server rooms is regulated by stan-

dard references to avoid overcooling and save energy. We observed

that such cooling-regulated datacenters introduce new challenges to

high-performance AI computing because the heat dissipated by the

cooling system may, in some cases, not match the heat generated

by the GPUs. This can trigger GPU thermal throttling and degrade

system performance. In this paper, we studied LLM inference ser-

vices, and we developed a new thermal-aware scheduler for LLM

inference services that optimizes the LLM inference throughput by

taking GPU voltage and frequency into account.

As an early work, we evaluated our scheduler only on single-

category GPU clusters.We plan a deployment onmulti-GPU clusters,

covering diverse datacenter GPUs.Wewill validate our system in the

physical environment and develop CFD-based Fluent simulations of

a realistic environment. We also believe that our observation of the

mismatch between heat dissipation and heat generation in cooling-

regulated datacenters could lead to a revisiting of other schedulers in

datacenters. With advanced schedulers, we believe that datacenters

can be more tolerant of higher cooling temperatures and can save

significant amounts of energy.
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