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Not All Water Consumption Is Equal: A Water Stress Weighted Metric

for Sustainable Computing
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Water consumption is an increasingly critical dimension of computing sus-
tainability, especially as Al workloads rapidly scale. However, current water
impact assessment often overlooks where and when water stress is more
severe. To fill in this gap, we present SCAREF, the first general framework
that evaluates water impact of computing by factoring in both spatial and
temporal variations in water stress. SCARF calculates an Adjusted Water
Impact (AWI) metric that considers both consumption volume and local
water stress over time. Through three case studies on LLM serving, datacen-
ters, and semiconductor fabrication plants, we show the hidden opportu-
nities for reducing water impact by optimizing location and time choices,
paving the way for water-sustainable computing. The code is available at
https://github.com/jojacola/SCARF.

CCS Concepts: « Social and professional topics — Sustainability; - Hard-
ware — Impact on the environment; « Computing methodologies —
Machine learning.

Additional Key Words and Phrases: Sustainability, Water Consumption,
Large Language Model, Semiconductor Manufacturing, Datacenter

1 Introduction

The rapid growth of computing demand, particularly in AI work-
loads, has significantly increased water consumption across the
whole computing stack, intensifying water-related sustainability
concerns [27, 48]. Recent studies show that serving 10 to 50 medium-
length queries from a large language model (LLM) such as GPT-3
can consume 500 mL of water [27]. Datacenters, which power Al
services, consume vast amounts of water for cooling. One Google
datacenter in Iowa consumed about 3.7 million cubic meters of wa-
ter in a year [12], and according to Bloomberg, nearly two-thirds
of new U.S. datacenters since 2022 are located in high water-stress
regions [34]. Semiconductor manufacturing is also water-intensive,
as large volumes of ultra-pure water are used to clean silicon wafers.
For instance, Intel [16] reported its annual global water consump-
tion of 9.6 million cubic meters. Globally, water consumption by
all sectors has increased exponentially over the past century [22].
This has led to conflicts between stakeholders, including the com-
puting industry. For example, in Taiwan, TSMC has competed with
agriculture for water, especially during drought years [2, 49].
Water consumption refers to the volume of water that is removed
from the immediate environment, including water that is evapo-
rated, transpired, or incorporated into products or processes [29, 36].
This metric differs from water withdrawal, which includes all water
extracted from the sources, including that discharged back after
use. Due to this removal from local watershed, water consumption is
more indicative of assessing regional water impact. Following prior
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work [27, 35], in this paper, we focus on Scope 1 water consumption
(i.e., water consumed directly on-site, such as in cooling systems)
and Scope 2 (i.e., off-site water consumption associated with elec-
tricity generation). Scope 3 (i.e., water consumed in upstream supply
chain) is not discussed due to the lack of public data.

The environmental impact of water consumption depends heav-
ily on spatial and temporal context. Spatially, the same amount of
water consumption can lead to greater environment burden in arid
regions than in water-abundant regions. For instance, both Central
California and the Mississippi River Basin are major farming regions,
but California’s dry climate has caused more rapid groundwater
level decline and thousands of dry wells [19, 20, 47]. Temporally,
water supply fluctuates over time. For example, California experi-
ences distinct wet and dry seasons, and climate projections indicate
these fluctuations will become more pronounced in the future [30].
Therefore, we must account for both the geographic location and
the temporal trajectory when analyzing water impact.

Prior work has explored water impact in computing, estimating
water consumption of Al workloads such as LLM training and in-
ference [8, 27, 33, 50], as well as datacenters [11, 13, 26, 39]. These
efforts primarily focus on modeling and profiling the amount of
water consumed by computational tasks or facility operations, pro-
viding valuable insights of water demand across different computing
layers. In parallel, others have begun to incorporate regional wa-
ter conditions into system design, including infrastructure deploy-
ments [6, 40] and workload scheduling [17, 18, 21, 28]. These studies
aim to reduce water impact by integrating water consumption as a
factor in facility siting or computing workload management.

However, existing efforts face two key limitations. First, many
focus solely on the quantity of water consumed, ignoring spatial
variability in water stress [11, 13, 17, 18, 26-28, 33, 39, 50]. Second,
studies that incorporate regional water data often rely on static
or short-term information [6, 8, 21, 40], failing to account for how
water stress evolves over time due to climate change or long-term
resource depletion. These two limitations ignore where and when
water stress occurs, leading to an incomplete picture of water impact.
Thus, there is an urgent need for a spatial- and temporal-aware
framework to evaluate water impact in computing.

To bridge this gap, we present SCARF (Stress-Corrected Assessment
of Water Resource Footprint), a general framework for evaluating
water impact from computing. The key insight is to integrate spatial
and temporal variation in water stress, which is the ratio of local
water demand to supply, reflecting regional scarcity. SCARF follows
four steps: (1) model water consumption volume, including both
on-site (Scope 1) and off-site (Scope 2) consumption; (2) map each
site to its corresponding hydrological basin; (3) calculate a Water
Stress Factor (WSF) using cumulative projections over time; and (4)
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Step 1. Raw Water
Consumption Modeling

Step 2. Spatial
Mapping

e On-site consumption from
cooling, humidification.

o Off-site consumption from
electricity generation.

e Query watershed ID using
geographic name.

e Map each facility to its
hydrological basin.

Step 3. Temporal Water
Stress Aggregation

Step 4. Adjusted Water
Impact Calculation

e Short-term water stress
factor (WSF).

e Long-term water stress
factor using discount rate.

o Multiply raw water
consumption by WSF.

e Used in scheduling, siting,
sustainability analysis.

Fig. 1. Overview of the SCARF Framework.

compute the Adjusted Water Impact (AWI) by multiplying total wa-
ter consumption with the WSF, yielding a unified metric for water
sustainability. To demonstrate the effectiveness and generalizability
of SCAREF, we present three case studies covering LLM serving, dat-
acenters, and semiconductor fabrication plants. Our key takeaways
for sustainable computing deployment include:

o LLM serving: The adjusted water impact of deploying LLMs
is highly location-sensitive and can vary significantly due to
seasonal water supply changes.

o Datacenters: The adjusted water impact of datacenters depends
on regional water stress, consumption volume, and weighting of
long-term versus short-term water stress.

o Semiconductor fabrication plants: Fab plants located in high water
stress regions can impose a much higher adjusted water impact
than those in low-stress regions.

We summarize the contributions as follows:

o Introducing SCAREF, the first systematic and general framework
for evaluating the water impact with water stress in computing.

e Designing a unified metric that incorporates both spatial and
regional variations in water stress, enabling sustainable planning
of the computing infrastructure.

e Conducting case studies in LLM serving, datacenters, and semi-
conductor fab plants, enabling comparison for water impact eval-
uation across the full stack of computing.

2 The SCARF Framework

Figure 1 shows the four steps of SCARF. The key insight is to assess
the environmental impact of water consumption by factoring in
where and when water stress occurs. SCARF models total water
consumption (on-site and off-site), maps site locations to hydrologi-
cal basins, calculates a Water Stress Factor (WSF) by aggregating
water stress over time, and computes the Adjusted Water Impact
(AWTI) by applying the WSF. We detail each step next.

2.1

We first model the raw operational water consumption, which in-
cludes both on-site (Scope 1) and off-site (Scope 2) consumption,
following the same methodology from prior work [27, 33, 50].
On-site water consumption refers to water that is directly
consumed at the facility, including cooling, humidification, and
other operational needs. It can be quantified using the on-site Water
Usage Effectiveness (WUEqp) metric in the unit of liters/kWh:

Won =P -t - WUEqy,

Step 1: Raw Water Consumption Modeling

¢y
where Wy, is the on-site water consumption (in liters), P is the
average power draw (in kilowatts), and ¢ is the runtime (in hours).
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Off-site water consumption refers to the indirect water con-
sumption associated with electricity generation at power plants.
This can be modeled by first computing the total energy used and
then applying the water intensity of upstream electricity sources,
denoted as the off-site Water Usage Effectiveness (WUEg) metric in
the unit of liters/kWh:

Wy =P -t-PUE - WUE., @)

where W is the off-site water consumption (in liters), and PUE is

the Power Usage Effectiveness calculated by dividing the total energy
used by the facility by the energy used by its IT equipment.

2.2 Step 2: Spatial Mapping

To account for spatial variation in water stress, we map the physical
location of each facility to its corresponding hydrological basin,
where water stress is actually measured [23]. Since water stress
varies by watershed—not by country or region—the same facility
in two different watersheds can face different water challenges
(see Figure 2). To perform this mapping, we first use the facility’s
geographic name (e.g., city or administrative region) to query the
Aqueduct API [14], which returns the corresponding watershed ID.
These watershed IDs from the global hydrographic classification [25]
are unique for each hydrological basin. We then use this watershed
ID to retrieve both current and projected water stress values from
the Aqueduct 4.0 dataset [23]. Aqueduct 4.0 is the latest iteration
of World Resource Institute’s water risk framework to translate
complex hydrological data into water risk indicators, including
water stress levels that will be used in the next step.

2.3 Step 3: Temporal Water Stress Aggregation

To account for temporal variation in water stress, we introduce the
Water Stress Factor (WSF)—a time-weighted aggregation of basin-
level water stress values. To reflect future uncertainty and potential
impact, WSF applies a user-defined discount rate y, following prin-
ciples from environmental economics [43, 44]. A higher discount
rate reduces the weight of future stress; an infinitely large rate ig-
nores future stress entirely. Below, we derive both short-term and
long-term WSFs to support different application needs.

Short-Term WSF. For short-term WSF analyses, such as evaluat-
ing the immediate water stress of computing tasks like LLM serving,
we focus on the current impact only:

WSFShrt = ws, 4, 3)

where WS, ; denotes the water stress at basin b at time .

Long-Term WSEF. For long-term facilities like datacenters, which
operate for decades, factoring in future water stress provides a
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more accurate view of sustainability, as regional water availability
may change over time. However, future conditions are uncertain
due to factors like climate variability and technological shifts. To
account for this and weigh future impacts appropriately, we apply a
discounting approach inspired by environmental economics [43, 44]:

WSE® = 3w - WSy, )
teT
where WS, ;, denotes the water stress at basin b at time ¢. The
weight w; is computed using a discount rate y, reflecting the relative
importance of future water stress:

/ 1 i
Wi = i1 W= o7
LT (4ptth Zyer Wy

where ¢ is the baseline year, and T is the set of years considered.
According to Aqueduct 4.0 [23], the baseline year is 2019, repre-
senting current conditions based on over 40 years of hydrological
data (1979-2019), and T = {baseline, 2030, 2050, 2080}. A lower dis-
count rate gives more weight to future water stress, while a higher
rate prioritizes near-term impacts. Note that when y — oo where
near-short impacts are maximized, all w; tend to zero except for
t = ty, where W;O = 1. In this case, the equation will be reduced to
the short-term WSF in Equation (3).

®)

2.4 Step 4: Adjusted Water Impact Calculation

After aggregating water stress at the basin level, we compute the
Adjusted Water Impact (AWI) by multiplying the total raw water
consumption by the corresponding Water Stress Factor (WSF). AWI
captures both onsite and offsite water consumption associated with
water stress levels in basin b. Depending on the time horizon, we
apply either the short-term or long-term WSF.

AWI = (Wop + Wog) X WSF, (6)

3 Case Study I: LLM Serving

In this section, we use SCARF to evaluate the short-term water
impact of LLM serving. LLM serving is flexible and dynamic; cloud
providers can shift regions, scale deployments, or update models
within months [45, 46]. Because of this short lifecycle, the adjusted
water impact depends mainly on the immediate time and location
of execution, not long-term trends.

3.1 Evaluation Methodology

We run three Qwen2.5 models (7B, 14B, 32B) [46] on a server with
an NVIDIA H100 GPU and Intel Xeon 8480+ CPU. We assume the
workload runs in Microsoft datacenters across different regions,
where on-site WUEs and PUEs are publicly reported [31]. Location-
specific off-site WUEs are obtained from the Water Impact Tool [41].

Power measurement. We collect real-time power consumption
data P for the GPU and CPU during inference. Power readings are
sampled every 200ms using NVIDIA’s pynvml API for the GPU and
Intel’s psutil API for the CPU.

Workload and profiling. We conduct experiments on the open-
source LLM serving platform vLLM [24] and simulate user queries
with requests sampled from the ShareGPT dataset [38], which con-
tains real multi-turn conversations. For each model, we gradually
increase the query-per-second (QPS) rate from 1 to 30. We identify
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Fig. 2. On-site and Off-site WUEs of Microsoft datacenter locations (top)
and their corresponding local water stress values (bottom). % refers to the
location with lowest value.
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Fig. 3. Adjusted Water Impact (AWI) per request for different model sizes
in different Microsoft datacenter locations.

the QPS that delivers peak throughput, then record the power P and
latency t for each request at that QPS.

Adjusted water impact. Once we have power P, execution time
t, PUE, and both on-site and off-site WUEs, SCARF calculates the raw
water consumption based on Equation (1) and Equation (2). Then,
SCARF computes the final adjusted water impacts using Equation (6)
for each model size at different locations.

3.2 Evaluation Results

3.2.1 Adjusted water impact in different locations. We first compare
the adjusted water impact across different locations. In Figure 2,
the top chart shows on-site and off-site WUEs for datacenters by
location. The Texas (TX) datacenter has the lowest WUE, meaning
it consumes the least water per unit of electricity. The bottom chart
shows water stress levels, with Iowa (IA) having the lowest water
stress. These charts reveal large differences in both operational
efficiency and environmental conditions across locations.

We then compute adjusted water impact per request by model
size using SCARF. As shown in Figure 3, the same model can have
drastically different adjusted water impacts depending on where it is
deployed. For example, the datacenter in Quincy, Washington (WA)—
a high-desert area—faces high water stress and less efficient WUE,
leading to over 1000x higher adjusted water impact per request
than in low-stress locations. Comparing Illinois (IL) and Wyoming
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Fig. 4. Water stress levels across various Microsoft datacenter locations
over the 12 months of the baseline year 2019.
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Fig. 5. Adjusted water impact (AWI) per request of 32B model in two loca-
tions: Wyoming (WY) and Arizona (AZ).

(WY), serving a small 7B model in WY can have a higher adjusted
water impact than running a large 32B model in IL.

Takeaway 1: The adjusted water impact of deploying LLMs is
highly location-sensitive. Same workloads can have orders-of-
magnitude differences in adjusted water impact depending on
where they are served.

3.22  Adjusted water impact in different months. Water stress at the
same location can change month to month due to seasonal shifts in
climate and water availability. As shown in Figure 4, water stress
fluctuates over time, with locations like Wyoming (WY) and Arizona
(AZ) showing particularly large swings.

We therefore select WY and AZ to examine how adjusted water
impact changes over time for the same model. Figure 5 shows the
monthly adjusted water impact per request for a 32B model. From
January to March, AZ has relatively lower water stress, resulting in
lower adjusted water impact than WY. But during the arid months
of April to June, AZ’s water stress spikes. As a result, its adjusted
impact surpasses WY’s, even reaching more than twice as much.

Takeaway 2: Even in the same location, seasonal changes can sig-
nificantly affect adjusted water impact. When you deploy matters—
not just where.

4 Case Study Il: Datacenters

In this section, we use SCARF to evaluate the long-term water im-
pact of datacenters. Since datacenters operate for decades [9, 10],
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Fig. 6. Geographic distribution of water stress (background) and raw water
consumption of Google’s U.S. datacenters (blue circles). Circle size indicates
annual water consumption volume.

their adjusted water impact must account for both current stress
and future projections.

4.1

We analyze the annual water consumption of Google’s U.S. data-
centers. We focus on Google because it provides the most detailed
public reporting among major cloud providers [4, 12, 32], including
site-specific data on annual water consumption and PUE [12].
Energy consumption estimation. Since Google does not dis-
close total energy consumption per datacenter, we estimate each
site’s power capacity using public data from the industry database
DataCenters.com [7]. For each datacenter, we identify all nearby
sites within a 100-mile radius and take the maximum reported power
capacity P (kWh) as a proxy for the Google site’s power capacity.
We note that datacenters do not continuously operate at peak power.
According to Google’s datacenter power dataset [37], the average
power utilization of datacenters is approximately 70%. Assuming
24/7 operation, we compute the annual energy consumption as
E = P X 24 X 365 X 0.7. We then apply the reported Power Usage
Effectiveness (PUE) to estimate the total energy consumption.
Adjusted water impact. Given the decades-long lifespan of dat-
acenters, SCARF evaluates the annual adjusted water impact using
both current water stress data and future projections for 2030, 2050,
and 2080. Aqueduct 4.0 provides three pathways to represent future
scenarios of climate and socioeconomic change [23]: Business-as-
Usual pathway with moderate emissions and adaptation, Optimistic
scenario with sustainable development, and Pessimistic scenario
under high emissions. We adopt business-as-usual pathway in this
analysis. We apply a discount rate of 3% in long-term water stress
factor calculation, following the U.S. Water Resources Development
Act of 1974 (WRDA) [1]. We also analyze how changes in discount
rates and future scenarios affect long-term adjusted water impact,
helping to understand sustainability trade-offs under uncertainty.

Evaluation Methodology
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Fig. 7. (a) Annual water consumption of Google’s U.S. datacenters, (b) AWI
of Google’s U.S. datacenters using the 3% discount rate, both grouped by
regional water stress levels.

4.2 Evaluation Results

4.2.1 Adjusted water impact in different locations. We begin by
mapping water stress and datacenter water consumption. In Fig-
ure 6, western areas such as Southern California and Arizona exhibit
higher water stress. Many large water-consuming datacenters are
located in lower-stress regions, suggesting water availability may
influence site choice. Still, some datacenters are placed in high-stress
watersheds, raising long-term sustainability concerns.

To dig deeper, Figure 7(a) groups datacenters by their regional
water stress levels and compares their annual water consumption.
Following Aqueduct’s classification [23], we define water stress
levels as: low (<0.1), medium (0.1-0.4), and high (>0.4). While
most datacenters fall in low- or medium-stress regions, several high-
stress regions still show substantial water consumption.

SCAREF then calculates the adjusted water impact by integrating
both water consumption and water stress factors. As shown in
Figure 7(b), datacenters in medium-stress regions exhibit the highest
adjusted water impact, more than 2x higher than datacenters in
high-stress regions. In particular, sites in GA, NC, and SC show
significantly higher adjusted water impact than those in TX or NV2,
which face higher stress but consume less water.

Takeaway 3: Water stress alone is not sufficient to capture true
water impact. High water consumption in medium-stress regions
can cause greater long-term impact than moderate consumption
in high-stress regions.

4.2.2  Sensitivity check of discount rate. The discount rate controls
how much future impacts are valued compared to present ones.
As shown in Figure 8(a), higher discount rates sharply reduce the
weight of future years, emphasizing short-term outcomes. We adopted
a 3% discount rate in our main analysis above, following the U.S.
Water Resources Development Act of 1974 (WRDA 1974) [1].
However, discount rates vary by perspectives on intergenera-
tional responsibility and policy planning. For example, [42] advo-
cates a low discount rate of 1.4% to reflect ethical responsibility to
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Fig. 8. Sensitivity Check of Discount Rate. (a) Discounting weights of future
years under different discount rates. (b) Adjusted water impact (AWI) of
Google’s datacenters under different discount rates, with shaded areas
representing variability across different future scenarios.

future generations. In contrast,U.S. federal budgeting often uses a
7% rate to favor near-term returns [5].

Figure 8(b) shows how adjusted water impact (AWI) for Google
datacenters changes under different discount rates. The solid lines
represent the median AWI across all future scenarios; the shaded
areas reflect uncertainty among the three future pathways [23]. As
expected, lower discount rates place more weight on long-term
water stress, resulting in higher AWI and greater uncertainty with
larger shaded areas. Notably, the relative comparison between data-
centers can shift depending on the discount rate. For example, as the
discount rate decreases, TX’s AWI increases faster than NV2’s, indi-
cating that TX has higher long-term water stress. When long-term
impacts are prioritized (i.e., at low discount rates), NV2 becomes
the more sustainable datacenter location.

A more striking shift appears between NV and VA3. At low dis-
count rates, NV has lower AWI, suggesting that NV is more sustain-
able in long term. However, as the discount rate increases, NV’s AWI
surpasses VA3’s. This implies that when short-term water stress is
more heavily weighted, VA3 is more sustainable.

Takeaway 4: The choice of discount rate significantly alters dat-
acenter sustainability rankings. A site that is sustainable in the
long term (e.g., NV over VA3) may appear less favorable when
short-term impacts are prioritized.

5 Case Study Ill: Semiconductor Fab Plants

In this section, we use SCARF to evaluate the long-term water im-
pact of semiconductor fabrication plants (fabs), which often operate
over multiple decades. For instance, several Intel fabs were built in
the late 20th century and are still in active use today [3].

5.1 Evaluation Methodology

We analyze the annual water consumption of Intel’s U.S. semicon-
ductor fabs. We focus on Intel because it provides detailed public
reporting, including site-specific data on annual water consump-
tion [16] and energy consumption [15].

Adjusted water impact. Given the decades-long lifespan of fab
plants, SCARF evaluates the annual adjusted water impact using
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Fig. 9. (a) Annual water consumption of Intel’s fab plants, (b) AWI of Intel’s
fab plants using the 3% discount rate.

long-term water stress aggregation, based on the Business-as-Usual
scenario and a 3% discount rate, as in §4.

5.2 Evaluation Results

Figure 9 shows Intel’s U.S. fabs in three main regions: Chandler
in Arizona (AZ), Hillsboro in Oregon (OR), and Ronler Acres in
New Mexico (NM). Both Arizona and Oregon host two campuses.
Figure 9(a) illustrates the annual water consumption at each fab
location. The OR2 site reports the highest water consumption with
1.82x101° liters per year, followed by AZ2 in Arizona.

When SCARF accounts for water stress, the adjusted water impact
(AWTI) in Figure 9(b) shows significant differences. Despite consum-
ing less water, the Arizona fabs have much higher AWI due to the
region’s severe water stress. In contrast, Oregon and New Mexico
fabs show far lower AWI. This highlights how water stress, not just
consumption volume, drives environmental impact.

Takeaway 5: Semiconductor fabs consume a large amount of
water. Intel’s Arizona fabs have higher environmental burdens
than those in Oregon or New Mexico due to higher local water
stress, despite lower water consumption. It emphasizes the need
to factor in regional water availability in siting and operations.

6 Conclusions

We introduce SCAREF, the first general water impact evaluation
framework for computing by considering spatial and temporal vari-
ation in water stress. Using SCARF, we assess the water impact
across three layers of the computing stack: LLM serving (software),
datacenters (computing infrastructure), and semiconductor fabs
(hardware manufacturing). Our findings highlight the opportunities
for deploying more water-sustainable computing systems.
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