Energy Efficient or Exhaustive? Benchmarking Power Consumption of LLM Inference Engines

Chenxu Niu¹, Wei Zhang², Yongjian Zhao¹, Yong Chen¹

Texas Tech University¹

Lawrence Berkeley National Laboratory²

Overview

- Motivation: Why does LLM inference energy matter?
- Research Questions: What did we want to find out?
- Methodology: How did we measure and analyze it?
- Evaluation & Results: What did we find?
- Key Insights: What are the trade-offs and conclusions?
- Future Work

Motivation

- Large Language Models (LLMs) like the GPT-series and LLaMA-series have revolutionized the field of natural language processing.
- As models grow in parameter size, inference becomes a key bottleneck in real-world deployments.
- LLM inference is both computationally intensive and latency-sensitive, which is critical for real-time applications.

Motivation: The Hidden Cost

- Prior research has primarily focused on the energy costs of training and fine-tuning LLMs.
- However, recent evidence shows that the inference process now dominates the energy footprint, consuming nearly 90% of energy in large-scale deployments.
- Inference is a continuous process that directly impacts operational costs and environmental footprint.

Motivation: Inference Engines

To optimize performance, several inference engines have been developed. We chose four representative ones:

- Transformers: A highly flexible framework used as our baseline for comparison.
- **DeepSpeed:** A Microsoft engine focused on improving the scalability of the largest models.
- TensorRT-LLM: NVIDIA's specialized engine, optimized for low-latency and high-performance on NVIDIA GPUs.
- vLLM: An engine designed for high-throughput serving, featuring the "PagedAttention" technique.

Research Questions

- During the setup stage, what is the power consumption and latency to initialize engines and load models?
- During the token generation stage, how does energy efficiency vary across engines and hardware components (GPU, CPU, DRAM)?
- What is the relationship between energy efficiency and throughput?
- Is there a single inference engine that is the most energyefficient in all scenarios?

Methodology

We break down the entire inference process into two distinct stages:

- Setup Stage: Includes engine initialization and model loading.
- Token Generation Stage: Where the actual inference takes place.

$$E_{\text{total}} = E_{\text{Setup}} + E_{\text{TG}}$$

= $E_{\text{IE}} + E_{\text{LM}} + T \cdot E_{\text{PT}}$

Experimental Setup & Tools

Hardware Platform:

- NSF REPACSS Data Center (built 4 month ago)
- Powered by variable energy sources: including wind and solar.
- Will be a part of NSF ACCESS: https://allocations.accessci.org/resources

Experimental Setup & Tools

Hardware Platform:

- GPUs: 4 x NVIDIA H100 (94GB memory each)
- CPUs: 2 x Intel Xeon Gold 6426Y
- RAM: 503GB

Software & Models:

- Models: Llama 3.1-8B, Llama 3.2-1B, and Llama 3.2-3B
- Dataset: Alpaca (containing 52,002 prompts)

Experimental Setup & Tools

Measurement Tools:

- IPMI (Total System Power)
- NVIDIA Management Library (GPU Power)
- Intel RAPL (CPU & DRAM Power)

Evaluation & Results

Sta

Table 1. Energy Consumption and Latency of Loading Inference Engines and Model Loading for Different Model Sizes

Thi en

Phase	Engine/Model	Metrics				
		Latency (s)	Total Energy (J)	GPU Energy (J)	CPU Energy (J)	DRAM Energy (J)
E_{IE}	vLLM	48.39	27209.42	7298.76	11985.02	982.83
	Transformers	2.89	1632.91	413.02	518.35	70.81
	DeepSpeed	2.92	1691.98	419.71	538.71	71.98
	TensorRT-LLM	30.21	18722.34	4566.90	8627.28	627.02
E_{LM}	vLLM – 1B	3.81	2302.98	691.22	1028.89	80.73
	vLLM - 3B	9.11	5502.72	1792.73	2328.41	194.54
	vLLM – 8B	11.64	7184.06	2480.81	2659.39	251.56
	Transformers - 1B	1.29	748.43	229.19	323.24	27.85
	Transformers - 3B	1.75	1020.65	311.28	469.02	38.37
	Transformers – 8B	3.31	1963.59	586.35	726.50	84.18
	DeepSpeed – 1B	1.23	718.59	218.47	316.14	28.38
	DeepSpeed – 3B	1.77	1024.17	313.37	474.21	39.11
	DeepSpeed – 8B	3.23	1951.83	574.56	712.26	82.07
	TensorRT-LLM – 1B	2.62	1734.79	522.29	762.74	56.21
	TensorRT-LLM - 3B	4.27	3022.91	917.63	1492.41	102.67
	TensorRT-LLM – 8B	7.92	4892.89	1492.7	2088.12	162.83

Why the Huge Difference in Setup Time?

- vLLM & TensorRT-LLM perform extensive pre-optimization during setup.
- vLLM: Sets up "PagedAttention" for memory management and configures distributed inference.
- TensorRT-LLM: Requires model compilation, layer fusion, and hardware-specific CUDA kernel generation.
- Transformers & DeepSpeed use dynamic computation graphs with fewer optimizations, enabling faster deployment.

Evaluation & Results

Stage 2: Token Generation Energy Efficiency

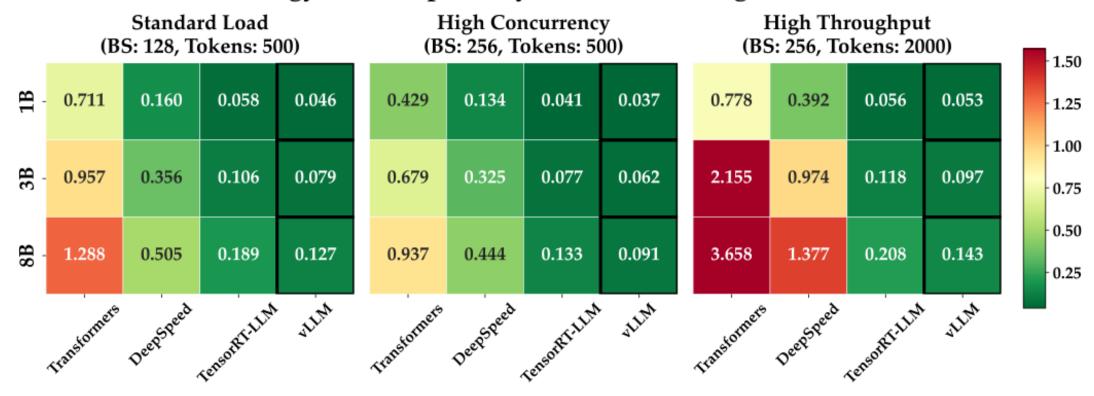
We simulated three real-world workload configurations:

- Standard Load: Batch Size (BS): 128, Output Tokens: 500
- High Concurrency: BS: 256, Output Tokens: 500
- High Throughput: BS: 256, Output Tokens: 2000

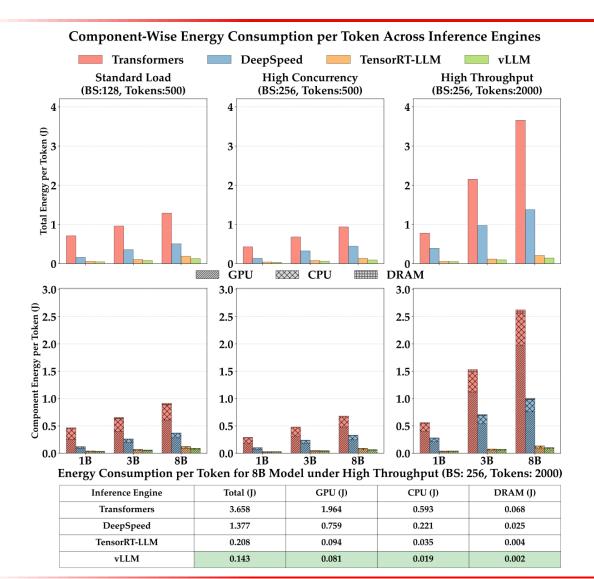
Evaluation & Results: Heatmap of Energy per Token

Stage 2: Token Generation Energy Efficiency

Energy Consumption by Workload Configuration



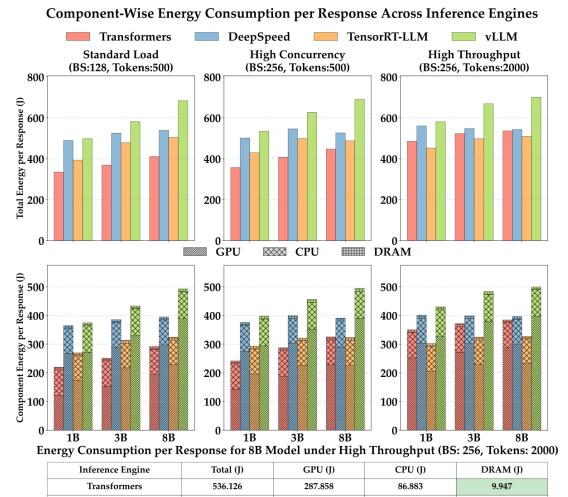
Deeper Dive: Component-wise Breakdown



Key Insights:

- The GPU is the dominant energy consumer, accounting for over 50% of the total energy.
- Under High Throughput, vLLM's GPU energy consumption is only 0.081 J/token, which is just 4% of what Transformers consumes.
- A similar trend is observed for CPU and DRAM, where vLLM also maintains the lowest energy usage.

Evaluation & Results: Energy per Response



299.366

232.081

397.513

87.305

85.277

92.280

542.900

510.368

700.849

Key Insights:

- The Paradox: While vLLM is most efficient per token, it consumed the highest total energy per response.
- The Reason: Different engines have different ending policies.
- vLLM generates the largest number of tokens per response, thus increasing its total energy consumption.

DeepSpeed

TensorRT-LLM

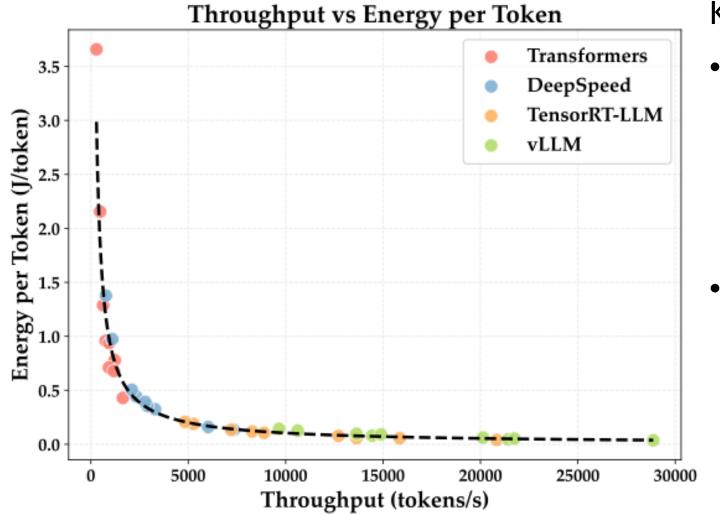
vLLM

10.046

10.167

10.282

The Relationship Between Efficiency and Throughput



Key Insights:

- Hypothesis Validated: Higher throughput improves energy efficiency by reducing the per-token energy cost.
- The Reason: The fixed idle power of the system is amortized over more tokens generated per unit of time.

Conclusion

 We conducted the first comprehensive benchmark of power consumption across several widely used LLM inference engines.

 We provided a fine-grained breakdown analysis across two lifecycle stages and key hardware components (GPU, CPU, DRAM).

Take-away Insights

Question: Is There a Single Best Solution?

Answer: No.

Our evaluation shows that no single inference engine universally optimizes energy efficiency across the entire lifecycle of inference.

The optimal choice is dependent on the specific use case.

Take-away Insights

It's a Trade-Off.

- For Latency-Sensitive or On-Demand Environments:
- Recommendation: Transformers, DeepSpeed.
- Reason: They offer the most efficient setup in both latency and energy consumption.
- For High-Throughput, Intensive Inference Environments:
- Recommendation: vLLM, TensorRT-LLM
- Reason: They dominate in energy efficiency per token, especially under heavy workloads.

Future Work

- Extend this study to larger-scale LLM models and multinode GPU clusters.
- Analyze the impact of distributed inference and inter-GPU communication on energy consumption.
- Propose and develop a novel, energy-efficient inference engine or framework that integrates the strengths of existing systems.

Thanks! Any Questions?

https://repacss.org/

