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Overview

* Motivation: Why does LLM inference energy matter?

* Research Questions: What did we want to find out?
 Methodology: How did we measure and analyze it?

* Evaluation & Results: What did we find?

* Key Insights: What are the trade-offs and conclusions?
* Future Work
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Motivation

 Large Language Models (LLMs) like the GPT-series and
_LaMA-series have revolutionized the field of natural

language processing.

* As models grow in parameter size, inference becomes a
ey bottleneck in real-world deployments.

* LLMinference is both computationally intensive and
atency-sensitive, which is critical for real-time
applications.
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Motivation: The Hidden Cost
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Prior research has primarily focused on the energy costs of
training and fine-tuning LLMSs.

However, recent evidence shows that the inference process
now dominates the energy footprint, consuming nearly 90%
of energy in large-scale deployments.

Inference is a continuous process that directly impacts
operational costs and environmental footprint.
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Motivation: Inference Engines

To optimize performance, several inference engines have been
developed. We chose four representative ones:

- Transformers: A highly flexible framework used as our baseline for
comparison.

- DeepSpeed: A Microsoft engine focused on improving the scalability of
the largest models.

- TensorRT-LLM: NVIDIA's specialized engine, optimized for low-latency
and high-performance on NVIDIA GPUs.

- vVLLM: An engine designed for high-throughput serving, featuring the
"PagedAttention” technique.
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Research Questions
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During the setup stage, what is the power consumption and
latency to initialize engines and load models?

During the token generation stage, how does energy
efficiency vary across engines and hardware components
(GPU, CPU, DRAM)?

What is the relationship between energy efficiency and
throughput?

Is there a single inference engine that is the most energy-
efficient in all scenarios?
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Methodology

We break down the entire inference process into two distinct
stages:

* Setup Stage: Includes engine initialization and model
loading.

* Token Generation Stage: Where the actual inference takes
place.

Etotal = Esetup + ETG
= EIE +ELM +T-EPT
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Experimental Setup & Tools

Hardware Platform:

* NSF REPACSS Data Center
(built 4 month ago)

* Powered by variable energy
sources: including wind and
solar.

* Will be a part of NSF ACCESS:
https://allocations.access-
ci.org/resources
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Experimental Setup & Tools

Hardware Platform:
* GPUs:4xNVIDIAH100 (94GB memory each)

e (CPUs: 2xIntel Xeon Gold 6426Y
e RAM:503GB

Software & Models:
* Models: Llama 3.1-8B, Llama 3.2-1B, and Llama 3.2-3B

 Dataset: Alpaca (containing 52,002 prompts)
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Experimental Setup & Tools

Measurement Tools:

 |PMI (Total System Power)
* NVIDIA Management Library (GPU Power)
* |ntel RAPL (CPU & DRAM Power)
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Evaluation & Results

StE Table 1. Energy Consumption and Latency of Loading Inference Engines and Model Loading for Different Model Sizes
L] M t .
Thl Phase Engine/Model erres
Latency (s) Total Energy (J) GPUEnergy (J) CPU Energy (J) DRAM Energy (J)
e n 1 vLLM 48.39 27209.42 7298.76 11985.02 982.83
E Transformers 2.89 1632.91 413.02 518.35 70.81
IE DeepSpeed 2.92 1691.98 419.71 538.71 71.98
TensorRT-LLM 30.21 18722.34 4566.90 8627.28 627.02
vLLM - 1B 3.81 2302.98 691.22 1028.89 80.73
vLLM - 3B 9.11 5502.72 1792.73 2328.41 194.54
vLLM - 8B 11.64 7184.06 2480.81 2659.39 251.56
Transformers — 1B 1.29 748.43 229.19 323.24 27.85
Transformers - 3B 1.75 1020.65 311.28 469.02 38.37
Eim Transformers — 8B 3.31 1963.59 586.35 726.50 84.18
DeepSpeed — 1B 1.23 718.59 218.47 316.14 28.38
DeepSpeed - 3B 1.77 1024.17 313.37 474.21 39.11
DeepSpeed - 8B 3.23 1951.83 574.56 712.26 82.07
TensorRT-LLM - 1B 2.62 1734.79 522.29 762.74 56.21
TensorRT-LLM - 3B 4.27 3022.91 917.63 1492.41 102.67
TensorRT-LLM - 8B 7.92 4892.89 1492.7 2088.12 162.83
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Why the Huge Difference in Setup Time?

* vLLM & TensorRT-LLM perform extensive pre-optimization
during setup.

* VLLM: Sets up "PagedAttention” for memory management
and configures distributed inference.

* TensorRT-LLM: Requires model compilation, layer fusion,
and hardware-specific CUDA kernel generation.

* Transformers & DeepSpeed use dynamic computation
graphs with fewer optimizations, enabling faster
deployment.
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Evaluation & Results

Stage 2: Token Generation Energy Efficiency

We simulated three real-world workload configurations:

« Standard Load: Batch Size (BS): 128, Output Tokens: 500
* High Concurrency: BS: 256, Output Tokens: 500
* High Throughput: BS: 256, Output Tokens: 2000
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Evaluation & Results: Heatmap of Energy per Token

Stage 2: Token Generation Energy Efficiency

Energy Consumption by Workload Configuration

Standard Load High Concurrency High Throughput
(BS: 128, Tokens: 500) (BS: 256, Tokens: 500) (BS: 256, Tokens: 2000)
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Deeper Dive: Component-wise Breakdown

Component-Wise Energy Consumption per Token Across Inference Engines

[ Transformers 0 DeepSpeed [ TensorRT-LLM [ vILM Key I n S Ig htS :

Standard Load High Concurrency High Throughput

H4 (BS:128, Tokens:500) \ (BS:256, Tokens:500) . (BS:256, Tokens:2000) . The GPU iS the dominant energy

’ ’ consumer, accounting for over 50%
2 S of the total energy.
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Inference Engine Total (]) GPU () CPU () DRAM (]) . .
Transformers 3.658 1.964 0.593 0.068 t t h l t gy g
DeepSpeed 1.377 0.759 0.221 0.025 m a I n a I n S e Owe S e n e r u S a e *
TensorRT-LLM 0.208 0.094 0.035 0.004
vLLM 0.143 0.081 0.019 0.002
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The Relationship Between Efficiency and Throughput

Throughput vs Energy per Token

Energy per Token (J/token)
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Key Insights:

Hypothesis Validated:
Higher throughput improves
energy efficiency by
reducing the per-token
energy cost.

The Reason: The fixed idle
power of the system is
amortized over more tokens
generated per unit of time.
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Conclusion

* We conducted the first comprehensive benchmark of power

consumption across several widely used LLM inference
engines.

* We provided a fine-grained breakdown analysis across two

lifecycle stages and key hardware components (GPU, CPU,
DRAM).
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Take-away Insights

Question: Is There a Single Best Solution?

Answer: No.

Our evaluation shows that no single inference engine
universally optimizes energy efficiency across the entire
lifecycle of inference.

The optimal choice is dependent on the specific use case.
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Take-away Insights

It’s a Trade-Off.

* For Latency-Sensitive or On-Demand Environments:

- Recommendation: Transformers, DeepSpeed.

- Reason: They offer the most efficient setup in both latency and energy
consumption.

* For High-Throughput, Intensive Inference Environments:

- Recommendation: vLLM, TensorRT-LLM

- Reason: They dominate in energy efficiency per token, especially under
heavy workloads.
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Future Work

* Extend this study to larger-scale LLM models and multi-
node GPU clusters.

* Analyze the impact of distributed inference and inter-GPU
communication on energy consumption.

* Propose and develop a novel, energy-efficient inference
engine or framework that integrates the strengths of existing

systems.
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https://github.com/chenxuniu/LLM-Inference-Engine-Benchmark

Thanks! Any Questions?

https://repacss.org/ ";?g‘_ﬁé;%%
OL¥ i
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