Panel Discussion:
The Sustainability of Foundation Models
(Can AI be sustainable?)

Martha Kim (Columbia University), Ramya Raghavendra (META),
Huamin Chen (RedHat), Andrew Chien (University of Chicago),
Sanjay Krishnan (University of Chicago)

Moderator: Eun Kyung Lee (IBM)
Ever rising energy demands for computing vs. global energy production is creating new risk, and new opportunities for radically different computing paradigms to drastically improve energy efficiency.

31% a year the energy consumption increase trend for hyperscalers in North America

>10% of the world's power will be consumed by hyperscalers by 2030
Why this is important

Datacenter energy consumption and technology trends

Datacenter energy consumption will increase to 8% - 20% by 2030.

End of Dennard Scaling (Moore’s Law)

AI power consumption doubles every 3 – 4 months. Large AI training jobs have life cycle carbon footprint of 5 cars (red AI).

Green AI, R. Schwartz, J. Dodge, N. A. Smith, O. Etzioni 2019
http://cpudb.Stanford.edu
Martha Kim
Columbia University
Can AI be sustainable? Yes!

- Far too early in technology lifecycle to declare defeat
- Ample opportunity to improve (even with sub-optimal carbon models)

Can probably optimize what we’re doing today
- Closed loop between application and system is very powerful

\[
\text{Carbon Task} = \frac{J\text{ used}}{J\text{ supplied}} \times J\text{ used} \times J\text{ supplied}
\]

Application efficiency (HW + SW) Datacenter PUE Carbon intensity of power source
Power Capping from Inside Application

Substring search, with adaptive thread count

```c
NRG_ADAPT_for (int i=0; i<STRINGS_TO_CHECK; ++i & NRG_AVG_P <= SOFT_CAP) {
    if (num_threads < MAX) num_threads += 2;
    // num threads search concurrently for substring
} NRG_ALTERNATE {
    num_threads -= 2;
    if (num_threads < MIN) num_threads = MIN;
    // num threads perform search
}
```

Can meet a broader range of power caps at significantly less energy

"NRG-loops: adjusting power from within applications." CGO '16
Ramya Raghavendra

Meta
AI’s Carbon Footprint

Operational Carbon

- CO2e (kg)
- Millions

<table>
<thead>
<tr>
<th>Universal Language Model</th>
<th>DLRM-1</th>
<th>DLRM-2</th>
<th>DLRM-3</th>
<th>DLRM-4</th>
<th>DLRM-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Universal Language Model Training
 - ≈5 Home’s Annual

- Recommendation Model Training
 - ≈45 Home’s Annual
AI’s (Operational & Embodied) Carbon Footprint

- Projected Embodied Carbon Cost
- Operational Carbon Cost (Rest)
- Operational Carbon Cost (Offset with solar)

Renewable energy

<table>
<thead>
<tr>
<th>Model</th>
<th>CO2e (kg)</th>
<th>Universal Language Model</th>
<th>DLRM-1</th>
<th>DLRM-2</th>
<th>DLRM-3</th>
<th>DLRM-4</th>
<th>DLRM-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Millions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2e (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carbon Optimization via HW-SW Co-Design

Universal Language Translation

Operational Power Footprint Normalized to Optimized Transformer on GPUs

- CPU Baseline: 810x
- CPU Data Management: 6.7x
- GPU FP32: 121
- GPU FP16: 10.1x
- Optimized Transformer: 2.4x

Platform + Hardware + Algorithm: 810x

Carbon Optimization via HW-SW Co-Design
Huamin Chen

RedHat
Kepler: Kubernetes-based Efficient Power Level Exporter

- **eBPF Program Generator**
 - Generate eBPF program

- **Pod Lister**
 - Query Kubelet API
 - Convert Container ID to Pod
 - Collect Cgroup blkio stats

- **Prometheus Exporter**
 - Export as Prometheus metrics
 - Pod
 - Energy stats
 - Perf counter stats and blkio stats

- **Performance Counters**
 - Process name
 - Container ID
 - Perf counter stats

- **Energy Stats Reader**
 - GET energy estimate model

- **Kernel Tracepoint**
 - eBPF attaches to tracepoint and perf counters

- **eBPF program**

- **Suites**
 - RAPL
 - SPEC Power based energy estimate
 - Hardware monitor sensor
 - GPU (nvml)

- **Query**
 - Prometheus

- **Scraping**
 - Online Learning Model Server
What problem? Foundation models are a key LEVERAGE in reducing the Carbon Impact of Generative AI

Andrew A. Chien1,2,
1University of Chicago 2Argonne National Laboratory
All authors contributed equally
Training of Foundation Models is not the problem; Inference is the major sustainability problem

- Per our ChatGPT study (earlier today), for a successful foundation model (GPT-3), even one application is 25x the cost of one training
 - Inference already dominates

- 100x increase in use is coming, Slack, Msft Office, etc.
 - Moderate additional training

- Inference will really dominate for these applications
 - $25 \times 100 = 2500x$ training ???
Business Balance and “Value engineering”

• Why did we go the moon in the 60’s and 70’s, and never go back? (until maybe 2025)
 • Investment was unsustainable, not supported by financial returns
 • Training cost higher than inference is financially unsustainable

• It makes no business sense to spend more to build a product, than can be earned back by its sales/use.
 • Foundational models that capture large volume use will be sustained, others will fail, and training in them will decline
 • Inference revenue must be greater than training cost, or the business is unsustainable

• Inference cost will dominate increasingly in the future, as the AI market matures.

Apollo 11, 1969

Artemis, 2025?
Could there be a case where Inference doesn’t dominate?

• For this to happen, there would have to be “really high value inferences”
 • So not that many inferences could have enough value to justify the cost of training

• Hmm...
 • Such applications could exist
 • Generative AI is not that application
 • Lots of wrong answers
 • Lost of low-value answers
 • ChatGPT does inferences for cheap, microcents
Summary

• Inference cost dominates; Inference carbon is the key problem
• Foundation models are not the problem, as their use reduces model Embodied carbon
 • Reducing and sharing training per application
• As unsustainable investment fades, Inference cost will dominate to an increasing degree

• => We should focus on and work on inference cost for foundation (and all) models
My Research Group

Algorithmic and systems foundations for large-scale sensing.

Physical World | Digital World

Database/Machine Learning Group
What is the cost of data collection/transfer/storage in emerging AI applications?
Why is it important?

Emerging AI Applications

Self-Driving Cars
Robots
AR/VR
IoT Applications

"Data" Costs

Collection cost
Transfer cost
Storage cost
Infrastructure embodied
Regulatory restrictions

Carbon footprint of the data lifecycle will become a dominant factor.
Is the Problem Real? How serious?

(Increasing carbon footprint of using AI models)
Embodied Carbon Footprint

Operational Carbon Footprint
Would Standardization be Helpful?

Carbon Quantification
Accuracy/validation
Training Carbon Footprint

Inferencing Carbon Footprint

Other Carbon Footprint
(Data processing, fine-tuning)
Feasible HW and SW Solutions?
Research Directions?
Community Efforts?
Any Other Discussions?