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Abstract

Traditional datacenter design and optimization for TCO and
PUE is based on static views of power grids as well as compu-
tational loads. Power grids exhibit increasingly variable price
and carbon-emissions, becoming more so as government ini-
tiatives drive further decarbonization. The resulting oppor-
tunities require dynamic, temporal metrics (eg. not simple
averages), flexible systems and intelligent adaptive control.

Two research areas represent new opportunities to reduce
both carbon and cost in this world of variable power, car-
bon, and price. First, the design and optimization of flexible
datacenters. Second, cloud resource, power, and application
management for variable-capacity datacenters. For each, we
describe the challenges and potential benefits.

1 Introduction

The creation of internet-scale services has driven the creation
of large-scale datacenters which have achieved dramatic com-
pute, cost, and power efficiency advances over the past two
decades. From the launch of Amazon’s EC2 in 2007, now
these cloud companies operate networks of datacenters that
underpin global cloud computing [12,23,32].

Providing new capabilities such as scalability, on-demand
access, pay-as-you-go accounting, and an array of new cloud
services, the growing commercial success of internet-scale
applications and cloud computing continues to drive the scale
and reach of computing infrastructure. Measured by revenue
growth or renewable purchases, this annual growth rate is
as high as 30% for some large cloud providers such as Mi-
crosoft and Google [10, 27] over the past 5 years. Behind
this rapid growth are newly built or expanded datacenters,
with maximum power capacity as large as 200 MW to 1
GW [12,13,23,30,32].

The design of these datacenters gave rise to the phrase the
"Datacenter is the Computer” [1,2], reflecting a new focus in
research and engineering around how to wholistically design
and optimize them. Key tenets of this technical activity is
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the optimization of total-cost-of-ownership (TCO) that takes
a wholistic view of capital (eg. buy the equipment and fa-
cilities) and operating cost (eg. power, water, staffing, etc.).
To optimize the rapidly growing power consumption of both
individual and networks of datacenters, a range of research
grew up around minimizing the use of power, particularly
the overheads of power in a datacenter that are not directly
delivering computing services [22,26]. Power-use efficiency
(PUE) has become a standard metric for capturing the energy
efficiency of a datacenter. This potent pair — TCO and PUE
has been the technical foundation for the design, construction,
and operation of datacenters and the cloud for two decades.

In recent years, the grid power context for cloud datacenters
has been changing. To respond to climate change, power grids
in the United States have begun large-scale adoption of wind
and solar renewable generation [14, 25], and over the past
20 years, these renewables at fractions of 10%, 20%, and
in some grids as high as 40% have changed grid dynamics.
These renewables are intermittent generators, producing low-
cost, carbon-free energy — but only when the environment
enables them to, not necessarily when the power grid needs it.
To integrate such intermittent, distributed generation, power
grids have adopted multi-market price-based dispatch [5, 16]
that produces power grid with large variations in both carbon-
intensity and price of power. The variation can be both fast
and dramatic, and as discussed in Section 2 has significant
implications for large power consumers such as datacenters,
directly affecting their power cost and carbon footprint.

There is little doubt that hyperscalers have the technical ca-
pability to build more and larger datacenters, but hyperscalers
face increasing pressure to reduce their carbon impact (de-
spite growing power consumption) and to reduce their power
cost (as Dennard scaling’s end has slowed electronics energy-
efficiency improvement). For example, to put this in context,
a gigawatt-datacenter could incur $652M (Virginia)-$1.3B
(New England) annual electricity cost and 1.8M (California)—
7.9M (Wyoming) metric-tons of CO, (mTCO;) associated
annual carbon emissions. The transformation of the power
grid with renewable generation provides opportunity to re-



duce both of these costs, if datacenter design and software can
flexibly manage variable capacity to match grid opportunity.
In this paper, we propose a new framework for datacenter
design that reflects these new opportunities, based on dynamic
metrics and optimization for variation — not the average PUE
traditionally used. This dynamic framework exposes a set of
challenging new systems research opportunities in datacenter
design, workload management, and more. Specifically:

* How to design datacenters that can flexibly exploit the
dynamic properties of the renewable power grid? (com-
puter, datacenter architecture)

e What are the new pillars analogous to PUE and TCO
that can frame comparison and measurement of effective
design? (metrics, measurement)

* How to reinvent resource management software to reflect
and efficiently exploit the dynamically varying compute
capacity? (resource management)

* How to coordinate optimization of carbon, SLOs, re-
source efficiency, and application compute efficiency?
(resource & sustainability mgmt, applications, ...)

* How to manage the distribution, sharing, and use of
power within future variable power (and therefore capac-
ity) datacenter? (power mgmt software, algorithms)

In rest of the paper, we describe varying dynamics in de-
carbonizing power grids in Section 2 and review traditional
datacenter optimization in Section 3. Section 4 presents op-
portunities in datacenter design and resource management
techniques to harness varying grid dynamics for cost and
environmental benefits. We summarize the paper and future
directions in Section 5.

2 Today’s Renewable-based Power Grid and
Price/Carbon Variation

Traditionally, power grids dispatch conventional power plants
(eg. nuclear, coal, natural gas) to match power supply and
changing demand. These resources form a relatively stable
supply curve, and some of them (eg. coal and nuclear) are
running nearly all the time to support base demand, producing
stable carbon content of generation. In the market clearing
process, as the power price is determined by the marginal
generation cost of the last power plant dispatched to meet the
demand, which is usually gas-fired power plant, the power
price is also relatively stable and varies with the demand.

As power grids incorporate increasing renewable genera-
tion like wind and solar, their variation and intermittence in
power supply have transformed power markets, causing rapid
fluctuations in power price [31] and carbon-content more
dynamic as shown in Figure 1.

When wind and solar are plentiful, they drive down the
price and carbon intensity of power (carbon emissions per
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Figure 1: Large variations in Price ($0-100/MWh) and Car-
bon Emissions (0-280 kg CO,/MWh) of power is a feature
of decarbonizing power grids (April 30—May 2, 2022, Data
Source: CAISO).

MWh). The resulting range is broad, swinging from $0 to
100/MWh with occasional spikes to $1000/MWh [4]. Nega-
tive prices are also frequent [7]. Carbon intensity swings can
be wide, ranging from 0 to 1000 kg CO>/MWh. The example
in Figure | shows California Independent System Operator’s
(CAISO) time-varying average power price and carbon in-
tensity from April 30 to May 2, 2022. On April 30, CAISO
momentarily achieved 100% renewable generation for the
first time [18]! As a result, the carbon-emission rate dropped
to zero (actually slightly negative at -50 kg CO,/MWh due
to power export), and the power price fell to near zero. These
trends toward greater variation and volatility are increasing.
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Figure 2: States and Countries have ambitious renewable
portfolio goals, adding renewable generation that increases
variation in future power grids.

Many countries or regions have proposed ambitious renew-
able portfolio standard (RPS, renewable fraction in power
generation) mandates/goals for the near future, many growing
to more than 50 or even 100% (Figure 2); the addition of
renewables to meet these goals will drive variation in power
price and carbon intensity far beyond that in Figure 1.

This growing divergence of a modern renewable grid when
compared with the past stable, unvarying power grid creates
new opportunities. Not only can dynamic properties of the
power grid be exploited to reduce carbon, but also to reduce
cost. Current datacenter design and resource management
metrics and approaches do not reflect this opportunity.



3 Traditional Datacenter Optimization

Total-cost-of-ownership (TCO) models provide a framework
to think about datacenter optimization, and several variants
[1,3,15] are widely recognized and used in research and com-
mercial practice. These models share several key elements.

First, traditional cost-optimization of datacenters uses the
TCO model, consisting of capital expenses (capex) and oper-
ational expenses (opex). Capex includes costs like datacenter
construction, land purchase, server purchase, and others, but
annualizing them. Opex refers to operational costs such as
power, staffing, etc. The model uses an annual average. Thus,
TCO optimization is framed as annualized cost minimization.

Further, these costs are based on fixed maximum power
consumption (eg. 40MW, 200MW, etc.) with a high availabil-
ity target (eg. six "9’s" or a less than a minute per year outage).
A classic example is shown in Figure 3, where capex (server
amortization, server interest, DC amortization, and DC inter-
est) are combined with opex (dc opex, pue overhead, server
power, and server opex) in a pie chart for TCO. These annual-
ized averages do not capture temporal variation of costs on an
hourly or daily basis that can occur in a renewable-based grid.
And a fixed target for availability fails to capture the continua
of partial availability, temporal extent, and more.
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Figure 3: Annualized Capex and Opex models are combined
for overall TCO (from [1] Case B)

Second, a critical focus on energy efficiency of the entire
system, including power distribution and cooling infrastruc-
ture has driven use of the power usage effectiveness (PUE)
measure. PUE captures the power overhead of cooling, power
distribution and more relative to the power supplied to the
computing equipment. The average PUE multiplied by the
computing equipment power reflects the datacenter power.

Facility Power _ Datacenter Power

PUE =

IT Equipment Power — Compute Power

Some analyses [1] treat PUE as if it were a static prop-
erty of a datacenter, facility PUE as shown in Figure 4a. But
as pointed out in [1], a more accurate measure is "instanta-
neous PUE", which captures PUE’s variation as a function of
datacenter occupancy, load, and external weather.
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Figure 4: Shifting to Carbon metrics requires time-dependent
metrics in a variable Carbon Emissions grid.

Further, to compute carbon emissions, even a nearly con-
stant datacenter power consumption can translate into rapidly
varying carbon emissions due to power grid variation in gener-
ation mix — swinging from renewables to fossil-fuels and back
again. In short, average PUE does not capture this dynamism.
This idea is illustrated in Figure 4b.

New measures are needed that capture power use efficiency
at an operating power, and capture carbon-emissions implied
as a function of time. This is critical because future datacen-
ters will vary their power significantly over time to exploit
both cheap power and lower-carbon power.

4 Opportunity: Flexing to Reduce Carbon

The variation of the modern renewable-based power grid
means that the carbon-content of power (and thereby com-
puting) depends on the time of consumption. For datacenters
the opportunity is to flex their demand and properties, so that
they consume (and do) more when grid conditions are favor-
able (low carbon, low price). This reduces their "weighted
average" of carbon emissions per unit compute. However,
flexing requires datacenter capacity flexibility; for example,
as in Zero-carbon Cloud [36].

To exploit varying datacenter hardware capacity, we need
flexible workloads and resource management. Ideally, they
would have service-level objectives (SLOs) that allow com-
putation at varying speed or perhaps delayed to a later time.
By "shifting workload" to exploit power grid opportunity,
we can reduce carbon emissions for a workload. We explore
hardware and software challenges — both infrastructure and
applications — to both create and exploit variable capacity. '

0ne can think about this as pure upside — increased intermittent capacity
— or partially controllable downside — outage. Both framings appear useful.
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Figure 5: Compute Power, PUE, and Resulting Datacenter
Power Consumption

4.1 Opportunity 1: Flexing Datacenters for
Cost and Carbon

As introduced in Section 3, we consider the instantaneous
PUE of a datacenter at different power levels as in Figure
5. On the left, the blue region indicates power consumed by
compute hardware, the line above the total datacenter power,
and the ratio between the two, the instantaneous PUE. A
traditional datacenter corresponds to this left region.

Consider a new kind of flexible datacenter that has an over-
powered mode — a bit like turbo or overclocking — where
the datacenter could run its cooling equipment, additional
fans, higher coolant flow rates, etc. to remove even more heat,
at a cost in power-efficiency, reflecting a higher PUE, and a
bigger gap between the colored region and the steeper red
lines. Such a datacenter operates in "blue" mode when power
is high-carbon, and in "blue+green" mode when power is
low-carbon. This variable capacity allows the datacenter to
weighted-average reduce power or carbon cost.

Applying this idea to a variable-capacity datacenter can re-
duce power cost or carbon at fixed capacity or boost capacity
under the same budget as shown in Figure 6, using data from
the German power grid [11]. And because in many power mar-
kets, power price generally covaries with carbon-emissions
content, both carbon and cost benefits can be achieved with
this same technique. Hence, a flexible datacenter lowers of
Opex as well as carbon cost (per unit compute).

The challenge for flexible datacenters is the additional
Capex. An operator’s point of view is — "I paid for it al-
ready, so use it always". To make flexing cost-effective, its
important to minimize the capital cost of the greater compute
capacity with innovative design. Ideally, the goal is to increase
compute/cooling/power distribution capacity with a sublinear
increase in Capex. Here are some potential approaches:

1. Turbo cooling with higher flow rates (or immersion),
more pump power per watt removed [17]

2. Run chilled water at lower temperature, decreasing effi-

ciency but increasing capacity (or run blowers faster) [9]
3. Turbo mode compute [17,34]

4. Increase power distribution capacity, but with lower re-
dundancy, build for dynamic range [39]

5. Reduce capacity of power, cooling, systems, and don’t
use flexibility on hottest days [21]

The first three approaches reflect ways to increase capacity,
but the increase is achieved at increased PUE (lower effi-
ciency) in the first two, and lower compute power efficiency
in the third. This matches well with the ability to exploit
cheap or low-carbon power. The latter two provide increased
flexible capacity, but at lower reliability acceptable because
this is "bonus" capacity. This lower reliability reduces cost per
unit compute. All reverse conventional wisdom for optimiz-
ing PUE. Finally, all five approaches reduce the Capex/unit
delivered compute. Interesting research problems include:

* What slopes of PUE are possible? What ranges of flexi-
bility are possible? at what Capex/unit cost?

* What is the right granularity to build flexibility? (10, 40,
200 MW units?)

* What datacenter designs (flexibility, headroom) are cost-
appropriate for different power grid settings? (variation
opportunity) for regional workloads? (flexibility).

* Are there other approaches that can increase flexibility?
(heat/cold storage, precooling, etc.)

More generally, design for the "flexible datacenter" chal-
lenge involves re-examining the full breadth of computing
hardware design, network, cooling, building, etc. [1], in a
dynamic (time-varying), region-custom (grid power) setting.

4.2 Opportunity 2: Flexing to Exploit Variable
Capacity

Once beyond the notion of a static datacenter capacity, the
challenge of resource management changes [38]. The objec-
tive is now both filling a variable capacity envelope (high
utilization), and to push the envelope to increase carbon or
price efficiency (see Figure 6, variation from German power
grid data). We adopt the metric of goodput, which represents
the system throughput of useful work, capturing both utiliza-
tion and increased capacity under budget.

Resource managers today deal with uncertainty in load,
but generally assume static or slowly changing capacity. In
such models, the current capacity will continue, so resource
managers can commit resources far into the future and simply
strive to optimize system utilization. However, in a renewable-
powered grid, both power price and carbon intensity can
change violently in response to changes in grid load and re-
newable generation. In this case, intelligent use of budget can
increase available capacity, and hence, significantly improve
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Figure 7: Flexible Resource Managers combined with Flexi-
ble Capacity Datacenters can increase goodput significantly

compute efficiency per unit of carbon emission or monetary
cost. Figure 6 demonstrates such benefits by simulations of
historical workload traces on Mira Supercomputer [28].

With a carbon budget, the capacity available to a resource
manager can change fast — relative to the length of resource
commitments — and unpredictably [38]. Without improved re-
source management, long-running jobs could be subject to ter-
mination or preemption, violating the service-level objective
(SLO). If resource capacity increases, the scheduler may have
underestimated and missed an opportunity to achieve more
goodput under budget. Therefore, one of the resource man-
agement challenges for flexible datacenters is the mismatch
between rapid change in capacity and resource managers’
assumption into the future.

One way to reduce the mismatch is to provide schedulers
with information about the future (e.g., prediction). For ex-
ample, given foresight of capacity variation, resource man-
agers can reshape workloads to achieve high utilization with
variable capacity under the same budget (Figure 7, Mira Su-
percomputer). Ideally, to maximize system performance with
variable capacity, resource managers must close the gap be-
tween future capacity estimates and actual capacity changes.
This empowers them to minimize negative SLO impact. Po-
tential approaches include:

1. Accurate prediction of capacity (foresight) to enable
better resource management [24,29]

2. Increase workload flexibility with geo-distributed load
shifting [19]

3. Capture workload resource requirements over time (eg.
advertised max runtime, variation in memory or cpu
use) [6, 8]

4. Intelligent intra-datacenter power allocation and man-
agement amongst cells, racks, and servers [35]

5. New service models capturing temporal application flex-
ibility (eg. SLO, performance) [20,33]

6. Invent new techniques for workload reliability through
failures [37]

The first four approaches empower resource management
ideas to optimize system utilization at the right times. The
latter two focus on workloads providing more information to
enable flexibility to resource managers as they tolerate varia-
tions (subject to SLOs) or even failures. All enable resource
managers to better exploit variable capacity to reduce carbon
or power cost. Interesting Research Problems:

* How to determine the right power level? Should the
power grid have input?

* How to distribute power changes across applications?
hardware? What is fair? How does this limit the ability
to adapt to variation?

e What new service or workload models are best? For
different variation? Reliability? User experience?

5 Summary

Climate change and the radical transformation of the power
grid have forced dynamic management onto cloud datacenters.
We highlight several exciting new research directions, and we
suspect, the change has only begun. It is too early to tell how
these vectors of flexibility and dynamism will evolve, but we
are excited to pursue these growing opportunities.
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