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Abstract

Serverless computing has rapidly emerged as a popular
deployment model. However, its energy and carbon im-
plications are unclear and require exploration. This paper
takes a look at the fundamental distinguishing attributes
of serverless functions, and shows how some of them
make energy-efficiency challenging. The programming
model and deployment requirements of serverless func-
tions makes them terribly energy inefficient—consuming
more than 15X energy compared to conventional web
services. On the bright side, FaaS is still actively expand-
ing, and there is also an opportunity for rethinking FaaS
resource management and deployment models, and make
carbon efficiency a primary consideration. We present a
few such techniques: moving functions to energy-friendly
locations in distributed edge clouds; machine learning
based modeling and control; and function-level demand
response that combines ideas from approximate comput-
ing. Together, these represent a possible path forward to
making serverless cloud computing sustainable.

1 Introduction

Cloud computing is at the forefront of decarbonizing com-
puting. Large scale cloud platforms, which host millions
of different applications and consume more than 1% of
global energy [24], have been the prime target for energy
efficiency and renewable energy usage [10]. However,
continually evolving cloud abstractions and usage patterns
raise new challenges in energy and carbon-efficiency.
Serverless computing has rapidly emerged as a popular
deployment model, where applications are partitioned into
small, fine-grained, “functions”, whose execution is man-
aged by the cloud platform [3,9,28]. Application-code
can be near-instantaneously deployed on the cloud with a
true “pay for what you use” pricing model (millisecond
granularity), and automatic elastic scaling to meet any
workload fluctuations. A wide range of applications such
as web and IoT services, ML inference, data analytics,

and scientific computing, now use Functions as a Ser-
vice (FaaS) offerings of cloud platforms such as Amazon
Lambda, Azure and Google Functions, etc.

Given the sharp rise in its popularity, what are the en-
ergy and carbon implications of FaaS? While serverless
computing has many benefits for applications, its pro-
gramming model has imposed many resource manage-
ment and optimization challenges for FaaS providers [28].
In the first part of this paper, we explore some of the key
energy challenges that are a fundamental derivative of the
FaaS programming and deployment models.

Our preliminary empirical investigation suggests that
FaaS applications can be up to 15X more energy hungry
than conventional web services. This energy and carbon
(in)efficiency is unfortunately a fundamental attribute of
serverless functions owing to their programming model
and security isolation requirements. As FaaS usage contin-
ues its exponential growth, understanding and narrowing
this energy gap will be vital for the carbon footprint of
the overall computing ecosystem.

Our vision is to extend the notion of carbon and en-
ergy as a first class resource [8, 10] to serverless com-
puting. This will require a precise understanding of
where and how energy is consumed, so that functions
can be “charged” for their carbon footprint, and for cloud
providers to monitor and optimize their overall usage.
However, we find that such accurate energy accounting
and attribution will be especially challenging in FaaS ow-
ing to their distributed and resource-hungry control planes
(such as OpenWhisk). Prior work on power management
typically uses application or system level power and per-
formance models, but these techniques are not directly
applicable for serverless functions with distributed and
highly variable resource (and hence energy) footprints.

All hope is not lost, however. Serverless functions can
provide some unique opportunities to reduce cloud carbon
footprint, because of their location independence and pro-
gramming model. Many energy-first techniques such as
workload migration and demand-response scaling, which



are challenging for conventional VMs and containers, can
be significantly easier to develop and optimize for server-
less functions that can be “run anywhere”. FaaS can thus
provide new energy knobs to cloud platforms for moving
applications to carbon-friendly locations quickly and in
a fine-grained manner, which will be especially benefi-
cial for distributed edge clouds powered by intermittent
renewable energy like solar and wind.

The FaaS programming model also allows for function-
level demand-response. A function can have multiple
implementations that trade off energy for output qual-
ity or performance. This can allow the cloud provider
to run the appropriate function implementation based on
energy/carbon availability and application preferences. Fi-
nally, functions are repeatedly invoked, and this permits
data-driven and ML techniques such as transfer learning
which can be used for coarse-grained and practical energy
management.

Serverless computing is a rapidly developing area in
both research and industry. Making it sustainable will
be a significant challenge, but this is a timely opportu-
nity to make energy and carbon efficiency a first-class
design consideration through a combination of new mech-
anisms, policies, and user interfaces and incentives. The
energy-first perspective of serverless computing will also
help understand and prioritize the rapid advances in FaaS
performance optimization. This also provides opportuni-
ties to look at long-standing challenges in many systems
areas such as power management, approximate comput-
ing, transient computing, distributed edge clouds, cloud
economics, and others.

2 Background

This section provides a brief background on serverless
computing and introduces the key characteristics and com-
ponents that will make energy-efficiency challenging. We
also give an overview of the major challenges and solu-
tions inherited from traditional power management, and
explain why they may not be directly applicable.

2.1 Serverless Function Execution

Programming Model. Functions as a Service (FaaS) al-
lows users to register small snippets of function code
that get executed in response to some event or trigger
(such as an HTTP request, message queue event, etc.).
These functions must be stateless, and a new execution
environment is created for every invocation (and can be
destroyed after the function returns). The function code
also contains all the necessary code and data dependen-
cies (such as imported libraries and packages), and thus
functions may spend significant time being initialized be-
fore the event-handling code can execute. Functions are
executed inside virtual execution environments such as
hardware virtual machines or OS containers. Function

initialization, i.e., creating the execution environment and
resolving code/data dependencies, can take 100s of mil-
liseconds, and can significantly increase the latency of
small functions [15].

Control Plane. All these steps are orchestrated by a con-
trol plane (such as OpenWhisk [1]) which handles all
aspects of function execution. This control plane manages
a cluster of servers to run functions on, and implements
function scheduling and load-balancing, resource moni-
toring, function status tracking, storing function results,
logging, etc. The control plane itself is highly distributed
with many components such as API gateways, distributed
message queues (such as Kafka), and databases. Thus the
resource and energy footprint of functions is spread out
across function initialization and virtualization compo-
nents, and the control plane itself.

2.2 Power Management

Managing and optimizing power has been a long-standing
challenge in computer systems, with many fundamental
techniques, and has been increasingly receiving attention.
Measurement. Measuring the energy consumption of
applications is non-trivial because of multi-processing,
limited hardware support, and fairly attributing the con-
sumption of shared resources (such as the OS) [12,20].
Software power monitors [13, 14,41] use application and
system level power models that relates resource consump-
tion (such as CPU time and frequency) to actual physical
power [11]. Because of hardware heterogeneity and multi-
processing, these models may need to be continuously
monitored and updated. In FaaS, the set of functions run-
ning concurrently on a single server is large (100s) and
highly dynamic since functions are typically very short
lived. Thus, the classic software power accounting tech-
niques may not be as effective.

Control. Controlling and restricting the energy consump-
tion at the application and system level is also a major chal-
lenge. Hardware features like CPU frequency scaling and
power states, and more modern features like RAPL (Run-
ning average power limit) are effective at system-level
control [19]. Since capping power reduces performance
of applications, doing so fairly and respecting quality-
of-service [26, 40] again requires the use of power-vs-
performance models, control theory, and machine learn-
ing [25]. Power capping can also be exposed through
OS abstractions such as power containers [33] or sand-
boxes [18,36]. The model-based per-application control
and capping is again challenging for short-lived server-
less functions, especially with a distributed control plane
whose energy footprint is spread across servers.
Cloud-level. Managing energy at the data-center or cloud
level requires additional policies and mechanisms. Work-
load shifting (either temporal or geographic) to run appli-
cations at energy-suitable locations is the key to match de-
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Figure 1: FaaS virtualization overheads can increase the
energy consumption by more than 15x compared to con-
ventional HTTP servers.

mand to variable renewable energy supply [5,6,30,38,39].
In general, this requires suspending and migrating ap-
plications, and many techniques from transient comput-
ing [31, 34, 35] are applicable. [8] makes the case for
virtualizing the energy system and exposing detailed infor-
mation to the applications in an exokernel-like approach.
The FaaS control-plane is the ideal location for making
intelligent policy decisions, since it has visibility into both
application and infrastructure energy considerations.

3 Challenges in Energy-first FaaS

For energy and carbon to be first-class resources in cloud
computing, they must be extended to the rapidly growing
serverless/FaaS deployments and applications. That is, the
primary consideration must be reducing, monitoring, and
controlling FaaS energy usage. We now look at empirical
results to highlight the severity of these challenges.

How energy efficient are functions? Function execution
requires additional isolation and sandboxing, which is of-
ten provided through operating system or hardware virtu-
alization. Using a container or a VM for every invocation
adds a significant latency penalty of 100s of milliseconds.
But how do these virtualization overheads impact energy
efficiency?

Figure 1 shows the average energy consumption of
handling a request using three techniques. The conven-
tional web server (python’s builtin httpserver), which does
not incur any virtualization overheads, requires around
0.6 Joules to serve a simple static “GET /” request. The
FaaS approach requires using a Docker container, and the
overhead of creating the container increases the energy
footprint by 15x. Specifically, we measure the average
energy consumption of a docker run command which
spawns a container, and prints the contents of the home
directory (equivalent to the above HTTP server’s out-
put), and destroys the container. Finally, we investigate
full hardware virtualization, by spawning a Firecracker
lightweight VM [4], and find its energy consumption to

be more than 30x that of the simple HTTP server.

The energy consumption was measured on a Lenovo
x1 carbon laptop running Ubuntu 20.04 by reading
/sys/class/power_supply/BAT0/sys/energy_now
which provides fine-grained battery energy information
in micro Joules. We use an open-loop load generator
for 1 minute, subtract the idle power consumption, and
report the average energy to handle the request during
the interval. For statistical robustness, we further average
energy consumption across three repeated 1-minute runs.

We only capture the energy consumption at the server
level, and do not account for the energy footprint of the
distributed control plane such as OpenWhisk which can
also be significant. We also measure the cold-start sce-
nario for Docker and Firecracker, since we do not reuse
the execution environment. However, the functions them-
selves do not import any code or data dependencies, so
this is still the “best case cold-start”. Keeping function
execution environments in memory is likely to reduce the
energy footprint just like it does the performance [15,29],
but the extra memory (and hence energy) consumption
may offset those benefits. Thus, these energy numbers are
approximate and may not be representative of all real sce-
narios. Nevertheless, they provide some sense of the scale
of challenges involved in making FaaS energy efficient.

Performance Variability. Controlling energy consump-
tion of applications is a tradeoff with their performance.
For FaaS, function performance and energy footprint is
affected significantly by the control plane, which is highly
distributed and comprises of load-balancers, databases,
and virtualization controllers at each server (such as
docker). Assigning energy footprints to functions will
also require fairly attributing these control-plane over-
heads to functions. However, this may be non-trivial, due
to the high variance in control-plane overheads.

Table 1 shows the time spent in just two OpenWhisk
components: the central controller that serves as the
ingestion-point and load balancer, and the docker daemon
on the server. We see that there is a very long tail of the la-
tency overheads of these components: the 99.9 percentile
is significantly higher than the average, even though the
functions are performing identical work each time. This
high variance makes it challenging to accurately attribute
control plane overheads to functions, and also for con-
trolling energy consumption. For instance, it may be hard
to attribute slower function performance due to power-
capping, or just control-plane jitter. The high and variable
control plane overheads thus add significantly to FaaS
energy consumption. The energy footprint of serverless
functions is high, distributed across many components,
and shows very high variance. This will make it challeng-
ing to use conventional power management techniques
and require new approaches.



Component | Avg Latency (ms) | 99.9%ile (ms)
Controller 0.002 13
Server 12 190

Table 1: FaaS control plane (OpenWhisk) overheads can
be high, distributed across the controller and servers, and
have very high variance.

4 Opportunities in Sustainable Serverless
Computing

Many research opportunities can be found by leveraging
the unique programming model of serverless functions for
improving their efficiency, and rethinking the way they
are used by applications and executed by FaaS providers.
We describe three broad solutions that leverage different
characteristics of functions, which we believe have not
received enough attention. Not only are the energy chal-
lenges of serverless computing surmountable, but our pro-
posed solutions can also address long-standing challenges
in broader sustainable computing and perhaps improve
the overall energy/carbon efficiency of cloud platforms.

4.1 Energy and Carbon Based Scheduling
Functions are not tied to any specific servers or locations,
and can potentially be “run anywhere”, as long as the
execution platform has access to the function’s code de-
pendencies and the container/VM “image”. By decou-
pling computation from its location, serverless computing
allows us to run functions at the most energy-suitable
location. Thus even though individual functions may not
be energy efficient, they can be run in carbon-friendly
locations to achieve better carbon efficiency.

This location independence can be an extremely potent
technique for sustainable computing, but is often challeng-
ing for other workloads. Since renewable energy (such
as solar and wind) can be intermittent, the availability
of servers powered by them is only transient [35]. Han-
dling resource unavailability in such transient computing
scenarios requires applications be “agile” and migrate to
locations where resources/energy is available [34]. Migra-
tion is often a challenge for most applications—however
serverless functions are short-lived and have small disk
images, and are more location-agile than traditional VMs
and containers. This is an example of a situation where
serverless computing can greatly simplify cloud-level sus-
tainability compared to traditional workloads.

Easy movement of functions opens up the possibility of
energy-efficient distributed “routing”, placement, schedul-
ing, and load-balancing. These policies can be developed
and applied at many levels, and are likely to yield interest-
ing insights into system design in general, as we briefly
describe below:

Global routing. We envision a geo-distributed FaaS
control-plane that runs functions on the most energy-
appropriate location/server. Distributed edge clouds can
offer different energy/carbon tradeoffs depending on loca-
tion, time, and resource and hardware availability. Func-
tions can be run on the edge [17] to provide low latency.
The decision of whether to run a function on the edge
or cloud data center is non-trivial. Running functions on
remote locations with ample renewable energy may be
suitable for carbon-sensitive functions, if the extra net-
work latency is tolerable. This will require new global
energy-based grid and placement algorithms. The task
will be made more challenging by the highly heteroge-
neous and bursty FaaS workloads [29].

Edge Clouds. The energy vs. performance tradeoff adds
a new dimension to the discussion on future cloud archi-
tectures. While edge clouds may have performance and
security/privacy advantages, their energy benefits need
additional analysis. Most hyperscale cloud datacenters
are extremely efficient and increasingly use renewable
energy [2,32]. However, edge locations may not have the
economies of scale or sufficient statistical multiplexing
to be powered by renewable energy alone. They may ei-
ther only have intermittent and limited energy availability,
in which case we need to be careful about which func-
tion to offload to the edge. Thus edge clouds may incur
higher carbon footprint than the data-centers, if they are
not co-designed with energy-first FaaS software.

Thus, thinking of energy and carbon efficiency can
throw new light into the tradeoffs of various cloud and
systems designs. Given the relatively nascent nature of
both serverless and edge clouds, this seems to be the right
time to investigate these issues.

Cluster-level load-balancing and scaling. At a cluster-
level, we need to decide on which server to run a function.
This placement/load-balancing is already challenging be-
cause it needs to consider locality and performance trade-
offs [16]. Energy considerations will make this more com-
plex, due to lack of power-proportionality of servers. Thus,
load-balancing needs to be tightly integrated with energy-
aware horizontal scaling. It may be more beneficial to turn
some servers off completely and run the remaining servers
at higher load. The performance vs. energy tradeoffs in
this scenario presents an exciting exploration opportunity:
overcommitting some servers may mean imbalance server
loads but perhaps result in better overall energy efficiency.
Hardware heterogeneity trends will lead to clusters with
multiple types of servers with different hardware configu-
rations and architectures. These servers will have different
power and performance tradeoffs, making energy-aware
scheduling more challenging.

Server-level scheduling. Energy-aware scheduling of
functions at a server level is also a rich exploration space.
Keep-alive and function snapshots can reduce cold-start



overheads, but their extra memory (and hence energy)
footprint can be significant, and thus policies should be
cognizant of the total energy footprint. Capping individ-
ual server energy consumption can also be accomplished
by delaying some function and absorb function work-
load bursts, which is a key characteristic of FaaS work-
loads [29]. Conventional power management techniques
using control-based power/performance tradeoffs can be
used—however, the large number of co-located functions
and their heterogeneous nature makes this challenging.
Interfaces and Incentives. The energy vs. performance
optimizations will ultimately depend on FaaS SLAs. De-
signing practical and effective “user interface” and energy-
incentives for functions is likely to be a major challenge.
A running average carbon limit can be set by users, or
more explicit carbon-pricing mechanisms can be viable
starting points. Energy-pricing for functions can also fix
the current misaligned incentives of current FaaS pric-
ing: since functions are charged by running time, cloud
providers dont have any incentive to improve their perfor-
mance. Energy pricing will incentive users to write more
energy-efficient code, and cloud operators to improve per-
function energy consumption.

4.2 Learning-based energy management

Functions have repeated invocations, often with nearly
identical execution characteristics. This opens the door to
using online statistical learning techniques that can incre-
mentally learn from prior executions. The predictability
of function invocations and execution has already been
successfully used in various aspects of FaaS resource man-
agement such as keep-alive [15,29]. Even the success of
snapshot optimizations [7,27,37] is built on the assump-
tion that execution characteristics of functions across in-
vocations is nearly identical (modulo large changes in
function input characteristics).

This predictability can be leveraged to develop data
and Al-driven energy management. Instead of measuring
or optimizing the energy footprint of a specific invocation,
providers can apply policies over larger intervals of time.
For instance, while energy accounting and attribution has
many challenges as shown in the previous section, it may
be much easier to estimate average energy consumption of
a function over an hour/day. The repeated invocations also
open the door to game-theoretic techniques for attribution
such as Shapley values [12].

The power/performance models and utility curves of
functions can also be incrementally obtained, without de-
pending on expensive and impractical offline profiling,
which is required for most other applications today. The
FaaS programming model also gives providers enough
visibility into the application to use statistic program anal-
ysis and transfer learning [42] techniques. For example,
the energy footprint of a function could be predicted based

on other similar functions, and a database of energy fin-
gerprints could be collaboratively built. Some of the tech-
niques from widely studied areas like NILM [23] (Non
Intrusive Load Monitoring) can be adapted, since the prob-
lem of function energy attribution in analogous.

4.3 Function Demand Response

Demand-response is a fundamental technique in energy-
aware systems where the energy consumers alter their con-
sumption patterns (i.e., demand), in response to changes
in energy supply [22]. The FaaS programming model
provides a unique opportunity for implementing function-
level demand response. Multiple variants of a function
can be implemented with different energy footprints, and
the provider can choose to execute “low-energy” variants
under energy pressure.

Many kinds of applications are amenable to such de-
mand response: a smaller and less accurate ML model
may be chosen (common in vision processing tasks); the
number of loop iterations could be reduced; or the output
quality could be reduced (e.g., compression). The output-
quality vs. energy tradeoff also provides a rich design and
exploration space. This tradeoff is also fundamental to
approximate computing [21], and its techniques can be
adapted as a starting point. The tradeoff is exciting and is
not generally available in traditional VM/container based
deployments where the provider is restricted to crude
controls like stopping the application outright or reduce
parallel replicas.

Function-variants will be a powerful mechanism for en-
abling energy-agility. Designing policies using this mech-
anism also presents many challenges. Presumably, the
FaaS middleware can determine if a low-energy variant
should be executed. But this may require new pricing mod-
els and incentive schemes that allow users to concisely
specify conditions and preferences for this “degraded”
execution mode.

5 Conclusion

Serverless computing is a rapidly developing area in both
research and industry. Making it sustainable will be a
significant challenge, due to fundamental inefficiencies
and control plane overheads. We show how energy and
carbon efficiency can be made a first-class design consid-
eration through a combination of new mechanisms, poli-
cies, and user interfaces and incentives. This is a timely
opportunity to make energy a first-class resource in the
rapidly evolving ecosystem and influence it, and will re-
quire a cross-community effort involving FaaS users and
providers, operating systems, and hardware.
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