
Carbon-Efficient Neural Architecture Search
Yiyang Zhao

Worcester Polytechnic Institute
yzhao10@wpi.edu

Tian Guo
Worcester Polytechnic Institute

tian@wpi.edu

ABSTRACT
This work presents a novel approach to neural architecture search
(NAS) that aims to reduce energy costs and increase carbon effi-
ciency during the model design process. The proposed framework,
called carbon-efficient NAS (CE-NAS), consists of NAS evaluation
algorithms with different energy requirements, a multi-objective
optimizer, and a heuristic GPU allocation strategy. CE-NAS dynam-
ically balances energy-efficient sampling and energy-consuming
evaluation tasks based on current carbon emissions. Using a recent
NAS benchmark dataset and two carbon traces, our trace-driven
simulations demonstrate that CE-NAS achieves better carbon and
search efficiency than the three baselines.

CCS CONCEPTS
• Social and professional topics → Sustainability; • Comput-
ing methodologies → Neural networks; Search methodologies.

KEYWORDS
Sustainability, carbon aware, neural architecture search

ACM Reference Format:
Yiyang Zhao and Tian Guo. 2023. Carbon-Efficient Neural Architecture
Search. In 2nd Workshop on Sustainable Computer Systems (HotCarbon ’23),
July 9, 2023, Boston, MA, USA. ACM, Boston, MA, USA, 7 pages. https:
//doi.org/10.1145/3604930.3605708

1 INTRODUCTION
Deep Learning (DL) has become an increasingly important field
in computer science, with applications ranging from healthcare
to transportation to energy management. However, DL training
is notoriously energy-intensive and significantly contributes to
today’s carbon emissions [20, 31]. The main culprit comes down
to the iterative nature of training, which requires evaluating and
updating model parameters based on a large amount of data.

Neural architecture search (NAS) has emerged as a means to
automate the design of DL models. At the high level, NAS often
involves leveraging search algorithms to explore a massive architec-
ture design space, ranging from hundreds of millions to trillions of
candidates [15, 19, 23, 29–31], by training and evaluating a subset
of architectures. In searching for the best architecture for differ-
ent application domains, many NAS works have reported using
thousands of GPU-hours [19, 22, 23, 30, 31].

The environmental impact of NAS, if left untamed, can be sub-
stantial. While recent works have significantly improved the search
efficiency of NAS [19, 22, 23, 29, 31], e.g., reducing the GPU-hours
to tens of hours without sacrificing the architecture quality, there
still lacks conscious efforts in reducing carbon emissions. As noted in
a recent vision paper by Bashir et al. [2], energy efficiency can help
reduce carbon emissions but is not equivalent to carbon efficiency.

Table 1: Comparison of energy-efficient NAS evaluation
methods. Eval. cost refers to the cost of obtaining the evalua-
tion results. Init. cost describes additional dataset preparation and
the time required for training the model (e.g., supernet or predictor).
Accuracy measures the rank correlation between the evaluation
method and the actual rank. Predictor-based methods require Extra
data as a training set to construct the prediction model.

Method Eval. cost Init. cost Accuracy Extra data

One-shot [4, 15, 18, 26, 29] Low Low Intermediate No

Predictor [9, 14, 23] Low High† High† Yes

Low-fidelity [12, 15, 19, 23, 31] High None Intermediate‡ No

Gradient Proxy [25] Low Low Intermediate No
† It depends on the size of extra data.
‡ It depends on the extent of the fidelity.

This paper aims to bridge the gap between carbon and energy effi-
ciency with a new NAS framework designed to be carbon-aware
from the outset.

The proposed framework, termed CE-NAS, will tackle the high
carbon emission problem from two main aspects. First, CE-NAS will
regulate the model design process by deciding when to use different
NAS evaluation strategies based on the varying carbon intensity. To
elaborate, given a fixed amount of GPU resources, CE-NAS will allo-
cate more resources to energy-efficient NAS evaluation strategies,
e.g., one-shot NAS [3–5, 15, 18, 29], during periods of high car-
bon intensity. Conversely, during periods of low carbon intensity,
CE-NAS will shift the focus to running energy-intensive but more
effective NAS evaluation strategies, e.g., vanilla NAS [19, 22, 23, 31].
Second, the CE-NAS framework will support energy and carbon-
efficient DL model design via multi-objective optimization. Specif-
ically, we will leverage a recent learning-based multi-objective
optimizer LaMOO [30] and integrate it to CE-NAS to achieve search
efficiency.

Based on these two design guidelines, we sketch out the basis
of the proposed CE-NAS framework in Figure 1 and implement
a trace-driven simulator to investigate the promise of CE-NAS in
improving carbon and search efficiencies. Using carbon emission
traces from electricityMap [17] and a new NAS dataset called HW-
NASBench [13], we show that CE-NAS has the least relative carbon
emissions and only marginally lower search efficiency compared to
vanilla LaMOO [30]. Based on our investigation, we believe there
are many fruitful directions in the context of CE-NAS which we
outline in §5. We hope this discussion will serve as the blueprint
and a baseline for building a carbon-efficient NAS framework.

2 NAS AND ITS CARBON IMPACT
Neural architecture search (NAS) is a technique for automating the
design of neural network architectures. NAS aims to find an optimal
network architecture that performs well on a specific task without

https://doi.org/10.1145/3604930.3605708
https://doi.org/10.1145/3604930.3605708

Learn Space
Partition

Energy-consuming Evaluation

Dispatch

Train

Architecture Queue

Evaluated Architectures

Activate archs

Supernet for
𝓢𝒃𝒆𝒔𝒕

Sampled
Architectures

Search Engine

Reward

Sample

Energy-efficient Sampling

Push

High 𝑪𝑶𝟐 Period Low 𝑪𝑶𝟐 Period

Search Space

𝛀!"#$

GPUs

𝑪𝑶𝟐 trace

AI tasks

Question & answering

Image segmentation

Image classification Object detection

Speech recognition

Generative models

Devices

Hardware
constrains

Searched
model

Sec 3.2 Sec 3.3

Sec 3.4

Figure 1: An overview of CE-NAS. The sampling and evaluation tasks will be dispatched with different GPU resources based on carbon
emission intensity during the neural architecture search.

human intervention. NAS-designed neural architectures achieved
state-of-the-art performances on many AI applications, such as
image classification, object detection, and image segmentation [11,
19, 23, 24, 31].

However, NAS typically requires significant computational re-
sources (e.g., GPUs) to find the optimal architecture, with most of
these resources being used for architecture evaluation. For example,
Zoph et al. [31] used 800 GPUs for 28 days, equivalent to 22,400
GPU hours, to obtain the final architectures. Strubell et al. [20]
found that a single NAS solution can emit as much carbon as five
cars during its lifetime. These findings highlight the need for energy
and carbon-efficient NAS methods to reduce the environmental
impact of AI research.

Existing works on energy-efficient NAS often focus on improv-
ing the evaluation phase, e.g., via weight-sharing [4, 6, 15, 18, 26],
performance predictor [4, 14, 23, 28], low-fidelity NAS evalua-
tion [12, 15, 19, 22, 23, 31], and gradient proxy NAS [25]. A com-
parison of these methods can be found in Table 1. Weight-sharing
leverages the accuracy estimated by a supernet as a proxy for the
true architecture performance, while gradient proxy NAS uses the
gradient as a proxy. These proxy-based methods, although incur-
ring smaller search costs in terms of energy, can have lower search
efficiency because their estimated architecture accuracy may have
poor rank correlation [29]. Performance predictors provide a more
accurate performance prediction than weight-sharing and gradi-
ent proxy NAS. Still, their accuracy heavily relies on the volume
and quality of the training data, which can be very expensive to
create [27, 28]. Low-fidelity evaluation still requires training each
searched architecture, leading to limited energy savings.

In short, utilizing existing energy-efficient NASmethods requires
careful consideration of the search quality and efficiency trade-offs;
however, naively applying these methods may not even lead to
energy savings, not tomention lower carbon emissions. In this work,
we achieve the goals of search efficiency, search quality, and carbon
efficiency by leveraging a generic multi-objective optimizer [30], a
mix of energy-efficient [3, 15, 18, 29] and energy-consuming [19,

22, 23, 31] evaluation methods, and a carbon-aware GPU resource
allocation strategy.

3 RESEARCH ROADMAP
In this section, we present an overview of the proposed CE-NAS
framework (Figure 1) and sketch the basis for each component. We
hope this discussion will serve as the blueprint and a baseline for
designing a carbon-efficient NAS framework.

3.1 CE-NAS Overview
As observed in [2], grid carbon emissions vary geographically and
temporally based on the mix of active generators. Consequently,
different carbon emissions arise even when consuming the same
electricity at different locations or times. Operating the NAS frame-
work without considering costs across every carbon period will
lead to carbon waste when utilizing carbon-consuming but effective
NAS methods. Conversely, employing carbon-saving yet sample-
inefficient NAS methods may deteriorate search performance.

To address this issue, we propose a carbon-aware adaptive NAS
search strategy that balances energy consumption during high-
carbon and low-carbon periods. Our strategy decouples the two
parts of a NAS search process—evaluation (energy-consuming) and
sampling (energy-saving)—and handles them independently across
different carbon periods. The basic idea involves leveraging the
energy-efficient one-shot NAS [3, 15, 18, 29] to effectively estimate
the accuracy of architectures in the sampling process during periods
of high carbon intensity. Meanwhile, we will run the expensive eval-
uation part primarily during low-carbon periods. In the following
sections, we will provide a detailed explanation of the carbon-aware
NAS strategy.

3.2 Search Initialization
Similar to other optimization problems [7, 19, 21, 30], the first step in
our proposed carbon-efficient NAS framework involves initializing
the search process by randomly selecting several architectures,
a, from the search space, Ω, and evaluating their accuracy, 𝐸 (a),

carbon emissions, 𝐶 (a), and inference energy, 𝐼 (a). The resulting
samples are then added to the observed samples set, P.

Here, we define two types of methods for evaluating the accuracy
of architectures. One is actual training, which trains the architec-
ture 𝑎 from scratch until convergence and evaluates it to obtain
its true accuracy, 𝐸 (𝑎). Another method is called one-shot evalua-
tion [3, 15, 18], which leverages a trained supernet to estimate the
accuracy of the architecture, denoted as 𝐸

′ (𝑎). Note that obtaining
𝐸
′ (𝑎) is energy-efficient; however, due to the co-adaption among

operations [29], 𝐸
′ (𝑎) is often not as accurate as 𝐸 (𝑎). We train all

the sampled architectures in the initialization stage to obtain their
true accuracy for further search.

3.3 Energy-Efficient Architecture Sampling
To search for architectures with high inference accuracy and low
inference energy, we formulate the search problem as a multi-
objective optimization (MOO).

Primer. Mathematically, in multi-objective optimization we opti-
mize𝑀 objectives 𝒇 (𝒙) = [𝑓1 (𝒙), 𝑓2 (𝒙), . . . , 𝑓𝑀 (𝒙)] ∈ r𝑀 :

min 𝑓1 (𝒙), 𝑓2 (𝒙), ..., 𝑓𝑀 (𝒙) (1)
s.t. 𝒙 ∈ Ω,

where 𝑓𝑖 (𝒙) denotes the function of objective 𝑖 . Modern MOO
methods aim to find the problem’s entire Pareto frontier, the set of
solutions that are not dominated by any other feasible solutions.
Here we define dominance 𝒚 ≺𝒇 𝒙 as 𝑓𝑖 (𝒙) ≤ 𝑓𝑖 (𝒚) for all functions
𝑓𝑖 , and there exists at least one 𝑖 s.t. 𝑓𝑖 (𝒙) < 𝑓𝑖 (𝒚), 1 ≤ 𝑖 ≤ 𝑀 . If the
condition holds, a solution 𝒙 is always better than solution 𝒚.

Multi-objective search space partition. We leverage the recently
proposed multi-objective optimizer called LaMOO [30] that learns
to partition the search space from observed samples to focus on
promising regions likely to contain the Pareto frontier. LaMOO is a
general optimizer; we can extend it to NAS as follows.

We utilize LaMOO [30] to partition the search space, Ω, into
several sub-search spaces. This partitioning will be based on the
architectures and their true accuracy (𝐸 (a)) and inference energy
(𝐼 (a)) as observed in the sample set, P. Specifically, LaMOO recur-
sively divides the search space into promising and non-promising
regions. Each partitioned region can then be mapped to a node
in a search tree. Using Monte-Carlo Tree Search (MCTS), LaMOO
selects the most promising sub-space (i.e., tree node) for further
exploration based on their UCB values [1]. This optimal sub-space
is denoted as Ω𝑏𝑒𝑠𝑡 .

Next, we will construct and train a supernet [3, 29], S𝑏𝑒𝑠𝑡 , for
Ω𝑏𝑒𝑠𝑡 . We then use a NAS search algorithm to identify new archi-
tectures that will be used to refine the search space. In this work, we
employ the state-of-the-art multi-objective Bayesian optimization
algorithm qNEHVI [8]. This algorithm will generate new architec-
tures, denoted as 𝒂𝒏 , from Ω𝑏𝑒𝑠𝑡 , and estimate their approximate
accuracy, 𝐸

′ (𝒂𝒏), using S𝑏𝑒𝑠𝑡 . At the same time, these architectures
𝒂𝒏 are added to a ready-to-train set, R, consisting of architecture
candidates for further training.

Currently, to avoid unnecessary training and energy consump-
tion, we define the maximum capacity of R as 𝐶𝑎𝑝 (R). When the
capacity reaches, i.e., when there are more architectures to train

than we have resources for, the sampling process blocks until spaces
free up in R. The accuracy of architectures, either estimated by
S𝑏𝑒𝑠𝑡 or obtained from training, will be fed back into the search
engine as shown in Figure 1 to repeat the process described above.

As mentioned in §3.2, obtaining estimated accuracy through
supernet is energy-efficient because these architectures can be eval-
uated without the time-consuming training. Therefore, during high
carbon emission periods, CE-NAS will try to perform this process
to save energy and produce as little carbon as possible, as shown
in the middle left part of Figure 1.

3.4 Energy-Consuming Architecture Evaluation
If we perform the entire NAS only using the process described in
§3.3, CE-NAS essentially is performing one-shot NAS within the
sub-space S𝑏𝑒𝑠𝑡 . However, it is possible to improve LaMOO’s space
partition with more observed samples, as Zhao et al. showed [30].
This section describes the process to evolveS𝑏𝑒𝑠𝑡 during low carbon
emission periods.

At the high level, we will pick new architectures to train to
convergence and use them to refine the search space partition. That
is, the architecture 𝒂, with its true accuracy, 𝐸 (𝒂), will be added to
the observed sample set P to help identify a more advantageous
sub-space, Ω𝑏𝑒𝑠𝑡 , for the architecture sampling process. In this
work, we sort the architectures in the ready-to-train set R by their
dominance number. The dominance number 𝑜 (𝒂) of an architecture
𝒂 is defined as the number of samples that dominate 𝒂 in search
space Ω:

𝑜 (𝒂) :=
∑︁
𝒂𝑖 ∈Ω

I[𝒂𝑖 ≺𝑓 𝒂, 𝒂 ≠ 𝒂𝑖], (2)

where I[·] is the indicator function. With the decreasing of the
𝑜 (𝒂), 𝒂 would be approaching the Pareto frontier; 𝑜 (𝒂) = 0 when
the sample architecture 𝒂 locates in the Pareto frontier. The use of
dominance number allows us to rank an architecture by considering
both the estimated accuracy 𝐸

′ (𝒂) and its inference energy cost
𝐼 (𝒂) at the same time. CE-NAS will first train the architectures with
lower dominance number values when GPU resources are available.
Once an architecture is trained, it is removed from R.

This process is depicted in the middle right part of Figure 1.
Note that this process includes actual time-consuming DL training,
which is energy-intensive. Hence, CE-NAS will try to prioritize this
process during periods of low carbon intensity.

3.5 GPU Allocation Strategy
The carbon impact of the above two processes in a NAS search is ma-
terialized through the use of GPU resources. A key decision CE-NAS
needs to make is how to allocate GPUs among these two interde-
pendent processes. Assigning too many GPUs to the architecture
sampling could impact the search efficiency, i.e., the searched archi-
tectures are far from the Pareto frontier; assigning too many GPUs
to the architecture evaluation could significantly increase energy
consumption. CE-NASmust consider these trade-offs under varying
carbon intensity and re-evaluate the GPU allocation strategy.

Below we describe a heuristic strategy that automatically allo-
cates GPU resources between the sampling and evaluation pro-
cesses given the carbon emissions 𝐶𝑡 at time 𝑡 . This allocation is
based on the energy characteristics of the processes: architecture

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (hour)

150

175

200

225

250

275

300

325

350

Ca
rb

on
 a

ve
ra

ge
 in

te
ns

ity
 (g

CO
2/

Kw
H) Carbon trace 1

Carbon trace 2

Figure 2: Carbon traces from electricityMap. Trace 1 is based
on the US-CAL-CISO data from 2021, specifically covering the
period from 0:00, January 1, 2021, to 16:00, January 2, 2021. Trace
2 is also based on the US-CAL-CISO data from 2021, covering the
period from 17:00, January 2, 2021, to 9:00, January 4, 2021.

sampling is often energy-efficient because it does not involve ac-
tual training of architectures, while architecture evaluation is often
energy-consuming because it does. We assume that the maximum
and minimum carbon intensities 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 for a future time
window are known.𝐺𝑡 denotes the total number of available GPUs.
_𝑒 and _𝑠 represent the ratio of GPU numbers allocated to the eval-
uation and sampling processes at a given moment, and _𝑒 + _𝑠 = 1.
We calculate _𝑠 as 𝐶𝑐𝑢𝑟 −𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
, where 𝐶𝑐𝑢𝑟 is the current carbon

intensity. The GPU allocations for the sampling and evaluation
processes are, therefore, 𝐺𝑡 ∗ _𝑠 and 𝐺𝑡 ∗ _𝑒 . This simple heuristic
allocation allows CE-NAS to prioritize more energy-efficient sam-
pling tasks during periods of higher carbon intensity, whereas,
during low-carbon periods, CE-NAS will allocate more resources for
energy-intensive evaluation tasks.

4 PRELIMINARY RESULTS
We prototype the CE-NAS framework described in §3. This section
presents a preliminary analysis of CE-NAS for its carbon and search
efficiency based on trace-driven simulations. Specifically, we evalu-
ate LaMOO’s performance in partitioning the search space for NAS
on HW-NASBench [13].

HW-NASBench was selected due to its inclusion of information
on our two search targets: inference energy and accuracy. To assess
the search performance and carbon cost of CE-NAS, we have CE-NAS
search for optimal architectures on HW-NASBench and compare
the searched results to three different NAS search methods. CE-NAS
delivers the most effective search results within the same carbon
budget.

4.1 Setup
We conduct our experiments using CE-NAS and other baselines
based on the two carbon traces depicted in Figure 2. We initiate
the process with ten samples in the set P and set the maximum
capacity of R to be 300. Each method is simulated ten times for
consistency, and all search processes in the simulation are executed
on an Nvidia GeForce RTX 3090.

Carbon Traces. We used two carbon traces obtained from Elec-
tricityMap [17], a third-party carbon information service. Both
carbon traces span 40 hours and consist of the per-hour average

LaMOO selected spaceWhole space
Region

3500

3600

3700

3800

3900

4000

4100

H
yp

er
vo

lu
m

e

(a) Hypervolume

LaMOO selected spaceWhole space
Region

20

40

60

80

A
cc

ur
ac

y

(b) Accuracy

LaMOO selected spaceWhole space
Region

0

10

20

30

40

50

E
dg

eG
pu

_E
ne

rg
y

(c) Inference energy

Figure 3: Comparisons of architecture qualities between
LaMOO-selected region and the entire search space of HW-
Nasbench. We ran LaMOO 10 times. For each run, we randomly
sampled 50 architectures from the LaMOO-selected space and the
whole search space.

𝑪𝑶𝟐:	29940g

𝑪𝑶𝟐:	104312g

𝑪𝑶𝟐:	47068g

𝑪𝑶𝟐:	44370g

(a) With carbon trace 1

𝑪𝑶𝟐:	35273g

𝑪𝑶𝟐:	89562g

𝑪𝑶𝟐:	40335g

𝑪𝑶𝟐:	41152g

(b) With carbon trace 2

Figure 4: Search progress over time. CE-NAS has the lowest
relative carbon emission while achieving the second best 𝐻𝑉log_diff .

carbon intensity. We chose these two traces because they exhibit
varying carbon intensity, as shown in Figure 2, which allowed us
to evaluate both the search over time performance and CE-NAS’s
adaptiveness to carbon intensity.

NAS Dataset. A number of popular open-source NAS datasets,
such as NasBench101 [27], NasBench201 [10], andNasBench301 [28]
exist. However, none contain information on architecture inference
energy, one of our search objectives. We chose the new NAS dataset
called HW-NASBench [13] due to its inclusion of information on
our two search targets: inference energy and accuracy. Specifically,
HW-NASBench contains inference performance of all networks
in the NasBench201’s search space [10] on six hardware devices,
including commercial edge devices. In short, we use a combination
of architecture information, including inference accuracy, training
time, evaluation time, and energy cost in the edge GPU obtained
from HW-NASBench and NasBench201 [10].

Metrics. We use two main metrics to evaluate the carbon and
search efficiency of CE-NAS. First, we use relative carbon emission
to quantify the amount of CO2 each NAS method is responsible for.
The relative carbon emission is calculated by summing the average
carbon intensity (in gCO2/KwH) over the search process. We as-
sume that all NAS methods use the same type of GPU whose power

CE-NAS(ours) Vanilla Oneshot Random
Methods

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(a) 𝐶𝑂2 cost: 5000g

CE-NAS(ours) Vanilla Oneshot Random
Methods

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(b) 𝐶𝑂2 cost: 10000g

CE-NAS(ours) Vanilla Oneshot Random
Methods

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(c) 𝐶𝑂2 cost: 20000g

CE-NAS(ours) Vanilla Oneshot Random
Methods

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(d) 𝐶𝑂2 cost: 30000g

Figure 5: Search efficiency under carbon emission constraints.
These results are obtained using carbon trace 1, and we ran each
method ten times.

consumption remains the same throughout the search process. Sec-
ond, we use the metric hypervolume (HV) to measure the "goodness"
of searched samples. HV is a commonly used multi-objective opti-
mization quality indicator [7, 8, 30] that considers all dimensions
of the search objective. Given a reference point 𝑅 ∈ r𝑀 , the HV of
a finite approximate Pareto set P is the M-dimensional Lebesgue
measure _𝑀 of the space dominated by P and bounded from below
by 𝑅. That is, 𝐻𝑉 (P, 𝑅) = _𝑀 (∪ | P |

𝑖=1 [𝑅,𝑦𝑖]), where [𝑅,𝑦𝑖] denotes
the hyper-rectangle bounded by the reference point 𝑅 and 𝑦𝑖 . A
higher hypervolume denotes better multi-objective results.

Baselines. We chose three types of baselines according to dif-
ferent GPU allocation strategies and NAS evaluation algorithms.
During the search process, all search methods employ the state-of-
the-art multi-objective optimizer, LaMOO [30]. Specifically, one-shot
LaMOO is a method that utilizes one-shot evaluations throughout
the search process. The vanilla LaMOO relies on actual training
for architecture evaluation throughout the search. The random
GPU allocations is a strawman strategy that randomly allocates
GPUs between the energy-efficient sampling stage and the more
energy-consuming evaluation stage without considering the carbon
intensity.

4.2 Effectiveness of LaMOO for NAS
We conducted ten runs of LaMOO (i.e., search space split) with a
random search on the HW-NASBench dataset [13]. In addition, we
performed random sampling for both the LaMOO-selected region

CNAS(ours) Vanilla Oneshot Random
Methods

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(a) 𝐶𝑂2 cost: 5000g

CNAS(ours) Vanilla Oneshot Random
Methods

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(b) 𝐶𝑂2 cost: 10000g

CNAS(ours) Vanilla Oneshot Random
Methods

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(c) 𝐶𝑂2 cost: 20000g

CNAS(ours) Vanilla Oneshot Random
Methods

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
g

H
yp

er
vo

lu
m

e
D

iff

(d) 𝐶𝑂2 cost: 30000g

Figure 6: Search efficiency under carbon emission constraints.
These results are obtained using carbon trace 2, and we ran each
method ten times.

and the entire search space, conducting 50 trials for each. The
distribution of accuracy and edge GPU energy consumption of the
architectures in both the LaMOO selected region and the entire
search space can be seen in Figure 3.

Specifically, our results show that the architectures in the region
selected by LaMOO have higher average accuracy and lower aver-
age edge GPU energy consumption compared to those in the entire
search space. On average, the accuracy of the architectures in the
LaMOO selected region is 72.12, while the accuracy in the entire
search space is 68.28. The average edge GPU energy for the LaMOO
selected region is 16.59 mJ, as opposed to 22.84 mJ for the entire
space.

Furthermore, as illustrated in Figure 3(a), we observe that search-
ing within the LaMOO-selected region yielded a tighter distribution,
and the median hypervolume demonstrated an improvement com-
pared to searching across the entire search space. These results
suggest the efficacy of using LaMOO to partition the search space
for NAS.

4.3 Carbon and Search Efficiency
In this section, we evaluate the search performance and carbon costs
of our CE-NAS framework, comparing it to three other baselines
on the HW-NASBench dataset [13]. We use the log hypervolume
difference, the same as in [7, 8, 30], as our evaluation criterion for
HW-NASBench, since the hypervolume difference may be minimal
over the search process. Therefore, using log hypervolume allows
us to visualize the sample efficiency of different search methods. We

define 𝐻𝑉log_diff := log(𝐻𝑉max − 𝐻𝑉cur) where 𝐻𝑉max represents
the maximum hypervolume calculated from all points in the search
space, and 𝐻𝑉cur denotes the hypervolume of the current samples,
which are obtained by the algorithm within a specified budget. The
𝐻𝑉max in this problem is 4150.7236. For our simulation, we use the
training and evaluation time costs for the architectures derived
from NasBench201 [10], and inference energy costs measured on
the NVIDIA Edge GPU Jetson TX2 from HW-NASBench [13]. We
ran the simulation 10 times with each method.

As depicted in Figure 4, as the search time progresses, vanilla
LaMOOdemonstrates the highest performance in terms of𝐻𝑉log_diff .
Vanilla LaMOO’s superior performance can be attributed to its ap-
proach of training all sampled architectures to obtain their true
accuracy, which effectively steers the search direction. However,
when considering the relative carbon emission, vanilla LaMOO con-
sumes 2.22X-3.48X carbon compared to other approaches. This is
expected because vanilla LaMOO is an energy-consuming approach
and is not designed to be aware of carbon emissions associated with
joules.

We show that CE-NAS’s search efficiency is onlymarginally lower
than that of vanilla LaMOO while having the least relative carbon
emission under both carbon traces. Note that we are plotting the
𝐻𝑉log_diff in the Y-axis of Figure 4; the actual 𝐻𝑉 values achieved
by CE-NAS and Vanilla LaMOO are about 4100 and 4117, differing
only by 0.034%, even though the two lines look far apart. This result
suggests that only relying on energy-efficient approaches (e.g., one-
shot LaMOO in this case) is insufficient to achieve carbon efficiency.
For both traces, one-shot LaMOO has 1.17X-1.48X carbon compared
to CE-NAS.

Moreover, we observe that CE-NAS’s carbon efficiency is corre-
lated to the time-varying carbon intensity. When the coefficient
of variation of carbon intensity is higher, CE-NAS has more oppor-
tunity to explore the GPU allocation trade-offs between energy-
efficient sampling and energy-consuming evaluation without im-
pacting search quality. The relative carbon emission difference
between CE-NAS and random GPU allocations represents how well
CE-NAS makes such trade-offs. Currently, we are using a heuristic
approach, and it is possible to devise more sophisticated strategies
to further reduce relative carbon emissions. For example, if the
strategy could determine the GPU resources based on the queued
architectures and the current carbon intensity, it can better shift
the workload to periods of low carbon emission.

Finally, Figure 5 and 6 compare CE-NAS performance with base-
lines under different carbon budgets. We show that CE-NAS outper-
forms all baselines in terms of search efficiency. This is because
when there is a carbon budget, energy-consuming approaches (e.g.,
vanilla LaMOO) would exhaust the budget and end the search ear-
lier, as opposed to operating with an unlimited carbon budget. This
result suggests CE-NAS’s ability to dynamically adjust the search
process based on carbon budgets while still producing reasonable
search efficiency.

5 CONCLUSION AND FUTURE DIRECTIONS
In this work, we described the design of a carbon-efficient NAS
framework CE-NAS by leveraging the temporal variations in carbon

intensity. To search for energy-efficient architectures, CE-NAS in-
tegrates a state-of-the-art multi-objective optimizer, LaMOO [30],
with the one-shot and vanilla NAS algorithms. These two NAS
evaluation strategies have different energy requirements, which
CE-NAS leverages to schedule when to use each based on average
carbon intensity. Our trace-driven simulations show that CE-NAS is
a promising approach for reducing relative carbon emission while
maintaining search efficiency.

Based on our investigation, we believe there are many fruitful
directions in the context of CE-NAS. For example, one can train
an agent, e.g., use deep reinforcement learning, to automatically
output different GPU allocation strategies based on historical car-
bon traces. This can replace our current heuristic GPU allocation
strategy and will likely lead to better carbon and search efficiency.
Another direction is to develop models that are capable of accu-
rately predicting carbon intensity, similar to a recent work [16].
With such predictive models, CE-NAS can better schedule the NAS
tasks to a dynamic set of GPUs that can span across geographic
locations without adversely impacting the total search time.

ACKNOWLEDGMENTS
This work was supported in part by NSF Grants #2105564 and
#2236987, and a VMWare grant. We also thank electricityMap for
its carbon intensity dataset.

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2 (2002), 235–256.
[2] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy,

Ramesh Sitaraman, Abel Souza, and Adam Wierman. 2021. Enabling sustainable
clouds: The case for virtualizing the energy system. In Proceedings of the ACM
Symposium on Cloud Computing. 350–358.

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. 2018. Understanding and Simplifying One-Shot Architecture Search. In
Proceedings of the 35th International Conference on Machine Learning.

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once
for All: Train One Network and Specialize it for Efficient Deployment. In Interna-
tional Conference on Learning Representations. https://arxiv.org/pdf/1908.09791.
pdf

[5] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Ar-
chitecture Search on Target Task and Hardware. In International Conference on
Learning Representations. https://arxiv.org/pdf/1812.00332.pdf

[6] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive DARTS: Bridg-
ing the Optimization Gap for NAS in the Wild. CoRR abs/1912.10952 (2019).
arXiv:1912.10952 http://arxiv.org/abs/1912.10952

[7] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Differentiable
Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Opti-
mization. arXiv preprint arXiv:2006.05078 (2020).

[8] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2021. Parallel bayesian
optimization of multiple noisy objectives with expected hypervolume improve-
ment. Advances in Neural Information Processing Systems 34 (2021), 2187–2200.

[9] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding up
automatic hyperparameter optimization of deep neural networks by extrapolation
of learning curves. In Twenty-fourth international joint conference on artificial
intelligence.

[10] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search. In International Conference on Learning
Representations (ICLR). https://openreview.net/forum?id=HJxyZkBKDr

[11] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. 2019. NAS-FPN:
Learning Scalable Feature Pyramid Architecture for Object Detection. CoRR
abs/1904.07392 (2019). arXiv:1904.07392 http://arxiv.org/abs/1904.07392

[12] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2017. Fast bayesian optimization of machine learning hyperparameters on large
datasets. In Artificial intelligence and statistics. PMLR, 528–536.

[13] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran
You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. 2021. {HW}-{NAS}-
Bench: Hardware-Aware Neural Architecture Search Benchmark. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=

https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/abs/1912.10952
http://arxiv.org/abs/1912.10952
https://openreview.net/forum?id=HJxyZkBKDr
https://arxiv.org/abs/1904.07392
http://arxiv.org/abs/1904.07392
https://openreview.net/forum?id=_0kaDkv3dVf

_0kaDkv3dVf
[14] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,

Li Fei-Fei, Alan L. Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
Neural Architecture Search. In European Conference on Computer Vision(ECCV).

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable Ar-
chitecture Search. In International Conference on Learning Representations(ICLR).

[16] Diptyaroop Maji, Prashant Shenoy, and Ramesh K. Sitaraman. 2022. CarbonCast:
Multi-Day Forecasting of Grid Carbon Intensity. In Proceedings of the 9th ACM In-
ternational Conference on Systems for Energy-Efficient Buildings, Cities, and Trans-
portation (Boston, Massachusetts) (BuildSys ’22). Association for Computing Ma-
chinery, New York, NY, USA, 198–207. https://doi.org/10.1145/3563357.3564079

[17] Electricity Map. [n. d.]. Electricity Map. https://app.electricitymaps.com/map
[18] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018.

Efficient Neural Architecture Search via Parameter Sharing. In International
Conference on Machine Learning(ICML).

[19] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regular-
ized Evolution for Image Classifier Architecture Search. In Association for the
Advancement of Artificial Intelligence(AAAI).

[20] Emma Strubell, Ananya Ganesh, and AndrewMcCallum. 2019. Energy and policy
considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243 (2019).

[21] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. 2020. Learning search space
partition for black-box optimization using monte carlo tree search. Advances in
Neural Information Processing Systems 33 (2020), 19511–19522.

[22] Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. 2019.
Sample-Efficient Neural Architecture Search by Learning Action Space. CoRR
abs/1906.06832 (2019). arXiv:1906.06832 http://arxiv.org/abs/1906.06832

[23] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca.
2019. AlphaX: eXploring Neural Architectures with Deep Neural Networks
and Monte Carlo Tree Search. CoRR abs/1903.11059 (2019). arXiv:1903.11059
http://arxiv.org/abs/1903.11059

[24] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen, and
Yanning Zhang. 2020. NAS-FCOS: Fast Neural Architecture Search for Object
Detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[25] Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang.
2021. KNAS: green neural architecture search. In International Conference on
Machine Learning. PMLR, 11613–11625.

[26] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2020. {PC}-{DARTS}: Partial Channel Connections for Memory-
Efficient Architecture Search. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=BJlS634tPr

[27] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. 2019. NAS-Bench-101: Towards Reproducible Neural Architecture
Search. In Proceedings of the 36th International Conference on Machine Learning.

[28] Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper,
and Frank Hutter. 2022. Surrogate NAS Benchmarks: Going Beyond the Lim-
ited Search Spaces of Tabular NAS Benchmarks. In International Conference on
Learning Representations. https://openreview.net/forum?id=OnpFa95RVqs

[29] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo.
2021. Few-Shot Neural Architecture Search. In Proceedings of the 38th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 139). PMLR, 12707–12718. http://proceedings.mlr.press/v139/zhao21d.html

[30] Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuan-
dong Tian. 2022. Multi-objective Optimization by Learning Space Partition. In
International Conference on Learning Representations. https://openreview.net/
forum?id=FlwzVjfMryn

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc Le. 2018. Learning
Transferable Architectures for Scalable Image Recognition. In Conference on
Computer Vision and Pattern Recognition (CVPR).

https://openreview.net/forum?id=_0kaDkv3dVf
https://doi.org/10.1145/3563357.3564079
https://app.electricitymaps.com/map
https://arxiv.org/abs/1906.06832
http://arxiv.org/abs/1906.06832
https://arxiv.org/abs/1903.11059
http://arxiv.org/abs/1903.11059
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=OnpFa95RVqs
http://proceedings.mlr.press/v139/zhao21d.html
https://openreview.net/forum?id=FlwzVjfMryn
https://openreview.net/forum?id=FlwzVjfMryn

	Abstract
	1 Introduction
	2 NAS and its Carbon Impact
	3 Research Roadmap
	3.1 CE-NAS Overview
	3.2 Search Initialization
	3.3 Energy-Efficient Architecture Sampling
	3.4 Energy-Consuming Architecture Evaluation
	3.5 GPU Allocation Strategy

	4 Preliminary Results
	4.1 Setup
	4.2 Effectiveness of LaMOO for NAS
	4.3 Carbon and Search Efficiency

	5 Conclusion and Future Directions
	Acknowledgments
	References

