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ABSTRACT
Recently, we are witnessing truly groundbreaking achievements
using AI models, such as the much talked about generative large
language models, the broader area of foundation models, and the
wide range of applications with a tremendous potential to accelerate
scientific discovery, and enhance productivity. AI models and their
use are growing at a super-linear pace. Inference jobs are measured
by the trillions, and model parameters by the billions. This scaling
up comes with a tremendous environmental cost, associated with
every aspect of models’ life cycle: data preparation, pre-training,
and post deployment re-training, inference, and, the embodied
emission of the systems used to support the execution. There is
an urgent need for the community to come together and conduct
a meaningful conversation about the environmental cost of AI.
To do that, we ought to develop an agreed upon set of metrics,
methodology, and framework to quantify AI’s sustainability cost in
a holistic and complete fashion. In this paper, we propose unified AI
Sustainability metrics that can help foster a sustainability mind-set
and enable analysis, and strategy setting. To do that, we build on
and extend the data center sustainability metrics, defined in [19],
by introducing (for the first time to our knowledge) the concept
of embodied product emission (EPC) to capture the creation cost of
software assets, such as software platforms, models, and data-sets.
We then use this new concept to expand the job sustainability cost
metrics (𝐽𝐶𝑆 and𝐴𝑆𝐶) offered in [19] to factor in the context of the
execution of jobs, such as a platform as-a-service, or amodel serving
inference jobs. The result is applicable to any data center job, not
just for AI, and contributes towards accuracy and completeness. We
then show how to apply this approach to AI, with a particular focus
on the entire life cycle, including all phases of the life cycle, as well
as the provenance of models, where one model is used (distilled) to
create another one. We demonstrate how the metric can be used
to inform a more meaningful debate about AI strategies and cost.
Te novelty of the approach is that it can be used to reason about
strategies and trade-offs across the life cycle and ’supply-chain’ of
models.

CCS CONCEPTS
• Information systems → Data centers; • Social and profes-
sional topics → Sustainability; • General and reference →
Metrics;Measurement.
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1 BACKGROUND AND MOTIVATION
Artificial Intelligence (AI) is one of the fastest growing technology
domains, involving academic research, businesses, and users. The
enormous investment in AI led to groundbreaking applications
in a diverse set of areas. AI is used for accelerating the discovery
of drugs (e.g., [44], [39]), driving efficiencies at work (e.g., [37]),
discovering new materials towards renewable storage (e.g., [52]),
and more. At the same time, we are also in the midst of a heated
debate about the potential of AI to harm (e.g., [7]). Risks frequently
associated with AI include, fake news, biases, job losses, and, the
enormous environmental cost.

The amount of compute used to train deep learning models have
increased 300,000× in six years [42]. Data has increased signifi-
cantly, reaching exabyte scale [49]. The data size increase has led
to a super-linear growth trend in model size [49]. For example,
GPT3 based language translation tasks have increased in size 1000×
([5]). In contrast, systems’ memory capacity only grew moderately,
which has motivated a variety of scale-out infrastructure solutions
(e.g., [36, 49]), involving thousands of AI accelerators and other
specialized systems. There is no doubt that these trends come with
a dire environmental cost (stemming both from embodied and oper-
ational costs). Indeed, multiple researchers and practitioners have
raised the alarm on the environmental cost of AI, and offered a
calls-to-action ([23, 28, 42, 43]).

Meanwhile, a recent development in the field of AI is the concept
of foundation models (FMs) coming to the front stage (e.g., [3]).
FMs are trained on very broad datasets using self supervision at
scale. One of the interesting characteristics of foundation models is
that through transfer learning [45] they can be adapted (e.g., fine-
tuned, or distilled) to a wide range of downstream tasks. In fact,
the majority of state-of- the-art NLP models are now adapted from
one of a few foundation models, such as BERT [14], RoBERTa [34],
BART [32], T5 [38], BLOOM [48], LLaMA [46]. Foundation models
are not new, but the scale, scope, and emergent capabilities of
foundation models in the last few years have exceeded everyone’s
imagination. For example, GPT-3 has 175 billion parameters (in
comparison with the ‘modest’ 1.5 billion parameters of GPT-2),
and it can be adapted via natural language prompts to perform a
range of tasks despite not being trained explicitly to do many of
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Figure 1: The ‘Supply Chain’ of datasets and models

those tasks [5]. Proponents of foundation models claim that the
enormous amount of upfront carbon cost to train a broad model is
balanced in the ‘big picture’ by the low cost of re-using it via fine-
tuning or distillation for a particular task (e.g., [3]). Alas, with no
unified metric that analyses the entire provenance chain of models,
datasets, and their associated cost, it is very hard to substantiate or
refute this claim.

In this position paper, we apply broad knowledge of sustainabil-
ity principles, protocols and standards, including the GHG Protocol
([47]), and the accompanying guidance document for cloud services
([20], chapter 4), and product Life Cycle Assessment principles
(LCA) [16], to the domain of AI, in order to develop metric that
can be meaningfully used to drive sustainability mindset and ex-
amine trade-offs across the life cycle of AI models, and across the
‘supply-chain’ of models and datasets (see Fig. 1). As in [19], and
also as in the Software Carbon Intensity (CSI) specification offered
by the Green Software Foundation [21], we focus on a unit of work
submitted on behalf of an end-user, i.e., inference jobs in the case of
AI, as the primary object of interest. The metric is meant to capture
the actual amortized sustainability cost of a job, taking into account
operational overheads and associated embodied cost.

We leverage and expand the metrics defined in [19], concerning
the sustainability cost of jobs. Specifically, we define and motivate
a new term Embodied Product Cost for the sustainability cost of soft-
ware, such as the development and testing of platforms delivered
as an always running service (such as AWS’s Lambda [29]), and, in
the domain of AI, the preparing of datasets, and training of models.
We then expand the definition of job sustainability cost metrics
(𝐽𝑆𝐶 and 𝐴𝑆𝐶), to also factor in the associated embodied product
cost. The expanded definition can contribute towards accuracy and
completeness of job sustainability metrics. We then show how to
apply this expanded definition to the area of AI. To summarize, the
contribution of our paper is as follows:

(1) We define a new metric Embodied Product Cost, that aims
at expressing the ‘embodied’ carbon of software assets, i.e.,
the carbon cost of ‘manufacturing’ a software asset, such as
the development and testing of an on-line platform, or the
pre-deployment training of an AI model.

(2) We expand the definitions of Job Sustainability Cost (𝐽𝑆𝐶),
and Amortized Sustainability cost (𝐴𝑆𝐶), defined in [19] to
factor-in the operational cost of the software asset used as the

Figure 2: A typical preprocessing pipeline

context of the execution of the job, as well as, the ‘embodied’
costs of these software assets. The expanded definitions can
be used generally for any data center job, not just AI, and
contribute towards accuracy and completeness.

(3) We specialize and apply these new metrics to the case of
AI. We show that our approach can be used to investigate
trade-offs across the life cycle, and in particular can be used
to analytically prove or refute the claim that foundations
model re-use for downstream tasks is advantageous to the
environment, relative to the construction of smaller more
specific models, from scratch.

(4) We analyse the new opportunities for sustainability based
research across the life-cycle and provenance chain of mod-
els.

1.1 The life cycle of an AI model
To fully understand the real environmental impact, and to be able
to develop the right approach to assess the impact, we must closely
examine the model life cycle, end-to-end, including: data collection,
model exploration and experimentation, model training, model
distillation, and fine tuning, deployment, and then re-training, and
inference cost.

A pre-processing pipeline, needed to curate data for training a
model, could consist of the following steps: Data acquisition: via
crawling (for NLP), or running simulations (materials or physics);
De-duplicating: to ensure there is one copy of a document from
multiple sources; Selecting documents of certain languages of inter-
est; Splitting the documents into sentences for training; Identifying
Hate Abuse Profanity and PII information one may want to filter;
Forming the data files for training based on a given format. For
example, NLP datasets such as Wikipedia, Stories, OpenWebText,
BookCorpus, CC News are constructed via web crawling. Each of
them could potentially be processed through all the above steps
before it is ready for being used for training. Fig. 2 shows such a
pipeline.

The datasets are used to train multiple models in various combi-
nations. BERT, for example, was trained using English Wikipedia
and BookCorpus.Whereas Multilingual BERT (mBERT) was trained
on multilingual Wikipedia over 100+ languages [33]. RoBERTa on
English datasets spanningWikipedia, Stories, OpenWebText, Boock-
Corpus as well as CC-News.

After a model is trained, the model may be distilled to bring it to a
form factor which fits certain latency or space budget. For example,
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DistilBERT [41] and DistilMBERT are based on BERT and mBERT,
respectively. After the base model is deployed, if often needs to be
continuously trained to maintain accuracy. A model trained before
2019 would not have known about COVID. The frequency of re-
training varies. For example, [49] reported re-training in weekly,
or daily frequency for two different use cases.

1.2 Related Work
Sustainable computing has gained significant attention since a
decade ago, owing to the escalating demand for computing power in
Cloud computing and hyper-scale data centers, which has resulted
in a significant surge in energy consumption at the data center
and energy proportional computing [2]. To address this concern,
there have been continuous efforts aimed at reducing power/energy
consumption across different levels, ranging from chip/HW com-
ponents [6, 25, 26] to data center scale [12, 27, 30, 50], including
cooling techniques (Power Usage Effectiveness, PUE) and/or total
cost ownership (TCO) [8, 35, 40, 51].

Multiple recent works take a holistic view of the problem area
of sustainability in computing. Gupta et al. [22] posits that atten-
tion must be given to the embodied emission of systems, which
is becoming the dominant factor in the carbon cost of comput-
ing environments. [9] argues that we need to replace static metric
such as PUE and grid emission factors (CI) with dynamic, time
series based, metric to enable de-carbonization of data centers by
co-optimization. We agree with these assertions and believe they
are complementary to the approach presented here. The most rel-
evant to this paper is the work by Gandhi et al. [19] that argues
that we should focus on the unit of work performed (namely, a
job), and, include in its amortized sustainability cost also a ‘slice’
of the embodied emission cost of the systems used for the exe-
cution and other operational overheads such as for cooling. This
approach agrees with the software Carbon Intensity (SCI) specifi-
cation [18], put forward by the Green Software Foundations [21].
We agree that we should aim at amortizing all these aspects into
the carbon sustainability cost of jobs. Toward that goal, we posit
that [19] neglected to consider additional aspects associated with
the software product(s) used as an execution context for the job.
Examples of software products are a software platform, deployed
as an always-running service, required for the execution of jobs
(such as a serverless job running on the AWS Lambda platform
service [29]), and, in the domain of AI, a model, that is used to
serve inference requests initiated by end users. In both these cases
there is a significant overhead associated with (1) the on-going
maintenance of the product such as service operations, or, model
continuous re-training, and, (2) the up-front construction of the
product (including, development and testing, or, data preparation
and training). We propose new metrics, that build on the previous
ones, but include these two neglected factors.

In the area of AI, an astounding amount of progress has been
accomplished on the systems side, to design energy efficient accel-
erators specifically for AI workloads, optimized for metrics multi-
plication, and incorporating low precision, and low voltage (e.g.,
[1, 4]). Beyond the lens of system design, data scientists spend most
of their attention fiercely competing over accuracy as a primary

goal, and time-to-value as a secondary goals (e.g., [34]). The pa-
pers [43] and [42], were among the first to call attention to the
issue of the environmental cost of AI, focusing in particularly, on
the training phase of the life cycle. Michel et al. [31], offers a sin-
gle metric that can be used to compare the energy efficiency of
different models with respect to their complexity (e.g., based on
number of classes), and their accuracy. The work [36], asserts the
difficulty in assessing the 𝑔𝐶02𝑒 of AI models, which necessitate
considering the energy mix in the location of the training, and the
hardware architecture used. By considering these two aspect, they
correct previous estimates, such as in [43] by as much as 88×. They
also join the call to define standards and norms for Sustainable AI.
Lastly, Wu et al. [49], is first to suggest we need a holistic approach
to Sustainable AI that considers all stages of the life cycle, and also
including the embodied emission of systems used. Some of the in-
teresting findings in this paper are: (1) that the often completely
overlooked data preparation phase, consumes in some cases an
equal amount of energy as the training phase, and, (2) that the
ratio between energy spent in different phases of the model life
cycle varies across different use cases. These two key observations
contributed to motivating this position paper. First, we focus on
two specific software assets: datasets, and models. By defining the
concept of ‘embodied emission of software’ we capture the gCO2e
cost of pre-preparation of data set, and pre-training of models. Fur-
ther we factor-in these costs, as well as the, mostly overlooked,
cost of maintaining a model with frequent re-training, in amortiz-
ing the 𝑔𝐶𝑂2𝑒 cost per inference transaction, which is the unit of
work performed on behalf on an end user. In contrast with other
approaches that focus on a single phase only, e.g., training, (such
as, [43] and [42]), or consider each phase in isolation (such as, [49]),
we develop a metric that factors in the entire life cycle, including
data preparation, training, and fine-tuning, to amortize the life cycle
carbon cost of inference jobs. By using this metric, data scientists
can evaluate different strategies, e.g., the amount of data to use,
or number of model parameters, based on the expected number
of inference jobs, with the objective of minimizing the eventual
amortized job cost. They can compare life cycle strategies such as,
using a smaller, but more specific model, or synthesizing multiple
models, or tuning a very large model, with the objective of reducing
the eventual amortized carbon cost of jobs. End users of models,
can choose to use models with smaller amortized job cost, based on
a single number that reflects the carbon cost of each transaction.

2 TOWARDS METRICS AND METHODOLOGY
FOR SUSTAINABLE AI

As we stated above, our approach includes defining a new concept,
which we term Embodied Product Cost (Section 2.2), then using it
to expend the metric definition from [19] (Section 2.2), and lastly,
applying the result to the domain of AI (Section 2.3).

2.1 Overview of Data Center Sustainability
Metric

In this section, we give a brief overview of two of the relevant
metrics defined in [19]. The reader is referred to [19] for a complete
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description. All metrics defined, employ the unit of “carbon dioxide
equivalent" or gCO2e 1.

The Job Sustainability Cost (JSC) is aimed at quantifying the
carbon footprint associated with running a job. A job is any unit of
work, that an application performs relevant for scaling (i.e., work
jobs require more resources). The Job Sustainability Cost (JSC) is
calculated as the sum of energy used by the job’s share of all systems
participating in executing the job, and also including a ‘tax’ for the
cooling and power loss overheads. Energy is converted to carbon
based on the mix of energy sources and their associated carbon. For
example, consider a job 𝑗 that consumes 1 kJ energy executing on a
host, and an additional 0.08 kJ due to cooling and power distribution
losses. If the energy source mix is 80% coal and 20% solar, then,
using carbon-intensity values (and converting kJ to kWh), we have
𝐽𝑆𝐶 ( 𝑗) = 1.08 × (0.8 × 820 + 0.2 × 48) ÷ 3600 ≈ 0.2 gCO2e.

TheAmortized Sustainability Costs (ASC) is aimed at further
including an additional ‘tax’ for the life cycle cost of the systems
used in the computation. It is calculated by adding the job’s share
(or tax) of the systems’ embodied emission and other costs of all
systems participating in the computation to the previously defined
𝐽𝑆𝐶 . For the job 𝑗 from the example above, assume that it runs
exclusively for 5minutes on a system 𝑆 with an expected lifetime of
3 years, and the embodied cost of 𝑆 is 10,000 gCO2e. Let 𝑒𝑐 ( 𝑗) be the
‘tax’ for embodied carbon. Then, 𝑒𝑐 ( 𝑗) = 10,000 × 5

3×365×24×60 =

0.031, and 𝐴𝑆𝐶 ( 𝑗) = 𝐽𝑆𝐶 ( 𝑗) + 𝑒𝑐 ( 𝑗) ≈ 0.231 gCO2e.
The paper defines other useful metrics, such as Job Quality per

Cost Rate (JQCR) which we will not get into here due to space
limits.

2.2 Proposed Extension
We agree with [19] that an end-to-end data center sustainability
metrics must ultimately focus on the cost of a unit of work executed,
and that all overheads to the extent possible, must be added in.
However, one overhead which is not accounted for in the definitions
in Section 2.1, is that of a job execution context. Most jobs today,
in cloud or on-premise environments, execute in a context of a
continuously running shared software platform. For example, a
Serverless job on AWS executes in the context of a platform termed
Lambda [29]. A container in IBM Cloud, is executed in a context
of a platform termed IBM Kubernetes Service (IKS) [24]. There
are significant overheads associated with the operations and life
cycle of these platforms. For example, in IKS, there are a number of
servers dedicated to managing the service in every location where
the service is deployed. These management servers are always
running, independently of the number of jobs executing. They are
used to run management software to, e.g., monitor the health of
the systems, and to meter usage for billing purposes. In storage
and data services, such as IBM’s Cloud Object Storage (COS) [11],
processes wake up periodically, unprompted by any user initiated
action, to perform cleanup, and tier management. Other shared
services may be used across services (i.e., logging service), and the
proportionate share of their use must be taken into account as well
(see, [15]). In addition, we ought to not forget about the cost of
continuous deployment (CD), and testing of the platform.

1gCO2e stands for CO2 equivalent emissions, accounting for carbon dioxide and all
the other greenhouse gases, such as methane and nitrous oxide

We use the term software product (in short, product) to denote
any software asset, such as, a software platform that is used as-a-
services to support the execution of jobs, or, an AI model used in
serving inference requests, or, a datasets which are prepared and
then used for the training of AI models, etc. Each software product
is associated with a life cycle, including development, deployment,
and use.

Next, we define a new metric to capture the ‘embodied’ carbon
of software products, according to the same principles that are used
for calculating the embodied carbon of systems. For systems, ac-
tivities include material extraction, transportation, manufacturing
processes, etc, factoring-in the em entire supply chain leading to
the end product. For software, activities may vary based on the
type of software product. For a platform delivered as a service they
will include development and testing; for a dataset it includes data
preparation and de-duplication; and, for an AI model it includes
training. Each such activity consists of humans working on systems
that consume energy from certain power grid, with a particular
energy mix.

The Embodied Product Cost (EPC) is the upfront development
cost of any given software product (up to the point of its deployment
and use). It is calculated as the carbon footprint associated with all
activities needed to create the product. We can for example refer to
an activity of a developer, or, a tester, or a data scientist, a day, as a
job 𝑗 . The Embodied Product Cost 𝐸𝑃𝐶 , is the summation over all
𝐴𝑆𝐶 ( 𝑗) of all the jobs over the course of the creation of the product
(a period that can easily take a couple of years).

Next, we propose to expand the definition of 𝐽𝑆𝐶 to factor-in
the platform’s operational cost. To avoid confusion, we denote the
expanded definition as 𝐽𝑆𝐶𝑒 .

The Expanded Job Sustainability Cost (denoted 𝐽𝑆𝐶𝑒 ) is cal-
culated as the sum of energy (converted to carbon) of all systems
participating in the computation, and a ‘tax’ for cooling and power
loses, and a ‘tax’ for the platform overhead if a platform is used
as the execution context. For example, assume that the job 𝑗 is
a container that runs in the context of a platform such as IBM’s
IKS [24]. This platform, in a particular location such as Dallas, uses
3 servers dedicated to management, and their associated carbon is
50 gCO2e for every minute of operation. Let’s assume that the job
𝑗 executes for 5 minutes, and that while it is executing, there are
concurrently 9 other jobs, of roughly equal size, executing on IKS
in Dallas. Then, our job is ‘taxed’ 5010 × 5 for its share of the platform
overhead. This number is added to 𝐽𝑆𝐶 ( 𝑗) to derive 𝐽𝑆𝐶𝑒 ( 𝑗). In
addition, we also need to add the cost of service maintenance, and
continuous development and testing. We leave this as an exercise
to the reader.

Lastly, we expand accordingly the definition of the Amortized
Sustainability Cost (𝐴𝑆𝐶) of jobs. We claim that in addition to the
embodied emission of systems participating in the execution of a
job, we also have to add the embodied emission of any software
product that serves in the execution.

TheExpandedAmortized SustainabilityCost, denoted,𝐴𝑆𝐶𝑒 ,
is calculated as the sum of 𝐽𝑆𝐶𝑒 , and, the job’s share (or tax) of the
systems’ embodied emission (for all systems participating in the
computation), and, the Embodied Product Cost (EPC) of the plat-
form supporting the computation. As an example, if 𝑗 is a container
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running on IKS, in Dallas, and it runs for 5 days, concurrently
with 9 other equally sized jobs, and lets us assume that the ex-
pected life time of the IKS service in Dallas is 6 years, then it is
taxed 𝐸𝑃𝐶 (𝐼𝐾𝑆) × 5

10×365×6 , which is added to 𝐴𝑆𝐶 ( 𝑗) to derive
𝐴𝑆𝐶𝑒 ( 𝑗).

With the introduction of a new metric 𝐸𝑃𝐶 to capture the em-
bodied cost of software products, and with the expanded definition
of 𝐽𝐶𝑆 and 𝐴𝑆𝐶 , we are now ready to turn our attention to the
unique and fascinating life of AI models. We show how we apply
these three metrics to meaningfully calculate the sustainability cost
of AI inference jobs.

2.3 Metrics for Sustainable AI
We are now ready to apply the concepts and definitions from Sec-
tion 2.2 towards metrics for Sustainable AI.

There are two ‘products’ that are of key relevance for AI. The
first is a dataset. Refer to Section 1.1 for activities used to create
a dataset. Once a dataset is ready, it can be used to train multiple
different models. For a dataset𝑑 , we calculate the Embodied Product
Cost 𝐸𝑃𝐶 (𝑑) as the sum of carbon footprint of all activities involved
in preparing the dataset. If we refer to each such activity as a single
job then 𝐸𝑃𝐶 (𝑑) = ∑

𝑗 𝐴𝑆𝐶
𝑒 ( 𝑗).

The second ‘product’ that is relevant to AI, is an AI model. A
model is prepared (i.e., developed, or ‘manufactured’) via a process
of experimentation, and training (see Section 1.1) leveraging one or
more datasets. A given model can also be used to develop another,
sometimes task-specific, model, in a process called distillation or
fine-tuning.

For a model𝑚, 𝐸𝑃𝐶 (𝑚) is calculated as the sum of the carbon
footprint associated with the development (‘manufacturing’) of a
model, recursively. Formally, 𝐸𝑃𝐶 (𝑚) = 𝐴𝑆𝐶𝑒 ( 𝑗) +𝑤1×𝐸𝑃𝐶 (𝑚′) +
𝑤2×

∑
𝐸𝑃𝐶 (𝑑𝑖 ), where, 𝑗 is defined as the ‘job’ of preparing𝑚 based

on either another model𝑚′ or multiple datasets 𝑑1, 𝑑2, . . . and,𝑤1
is a tax weight to factor-in the re-use of a different model𝑚′. It is
0 if there was no model that was re-used, or proportioned, based
on its share of model re-use, and finally,𝑤2 is the tax weight, if the
model was created based on datasets𝑑1, 𝑑2, . . . . It is 0 if there was no
dataset that was used, or proportioned, based on its share of re-use.
As an example, consider the RoBERTa model ([34]). It was pre-
trained based on a set of datasets (Wikipedia, CC-NEWS, Stories,
OpenWebText, BookCorpus), using 1024 32GB NVIDIA V100 GPUs
for approximately one day. Assuming that the GPUs were working
at full capacity, the maximum power consumption is 300 J/s. Thus,
the energy consumed for pre-training is 1024 × 300 × 360 × 24 =

737 kwh. We still have to add cooling/power-loss overheads, as
well as, the ‘tax’ for the embodied system carbon footprint of
the GPUs, as well as the fraction of embodied product carbon of
the datasets used 𝐸𝑃𝐶 (CC − NEWS + BookCorpus +Wikipedia+
OpenWebText + Stories) (and then convert to carbon based on the
grid energy mix). Yet as another example, DistilBERT ([41]), was
created based on BERT via distillation. It has about half the total
number of parameters of BERT base and retains 95% of BERT’s
performances on the language understanding benchmark GLUE.
To create DistilBERT based on BERT, the team ([41]) used eight
16GB V100 GPUs for approximately three and a half days. Again
assuming GPUs were used to their max capacity (250 J/s) the energy

for distillation turns out to be 14.4 kWh, and we need to add a tax
for the fraction of re-use of BERT based on its 𝐸𝑃𝐶 , and the other
components as explained above.

Once a model is ‘ready’ it is deployed, and used to serve inference
jobs. We can say that a model is deployed when it is available to be
used to serve inference jobs. We can refer to the life cycle phase
when it is serving inference jobs as the operational phase.

In addition to serving inference jobs, the model must be kept
accurate, thus, it is being continuously re-trained. The frequency
of re-training, and the cost of it, varies across models, and use
cases. For example, in [49], the frequency reported for two different
use-cases is daily, and weekly.

Let’s assume that at time interval 𝑡 , a model𝑚 was used to serve
𝑛 inference jobs, and the carbon cost of re-training at that interval
was 𝑐 𝑓𝑟𝑡 (note, there may have been multiple re-training ‘jobs’ at
time interval𝑇 , in which case we take their sum). Then, the carbon
cost of re-training 𝑐 𝑓𝑟𝑡 , must be split equally (or in proportion to the
size, for non-equal jobs), across all jobs executing at time interval 𝑡 ,
i.e., 𝑐 𝑓𝑟𝑡/𝑛 is added.

As an example, inference jobs based on DistilBERT take ≈ 410
seconds to complete on an Intel Xeon E5-2690 v3 Haswell 2.9 GHz
CPU, which translate to ≈ 0.015 kWh of energy. This is about 60% of
the cost of inference with the original BERT. This demonstrates the
benefits of tolerating the additional upfront cost associated with
distillation, for downstream efficiency gains. To calculate 𝐽𝐶𝐴𝑒
we need to also include the cost of re-training which is use case
specific. Adding in the cost of model re-training will encourage
data scientists to practice sustainability mindset, examining, for
example, the needed frequency.

Finally, lets now discuss how we calculate 𝐴𝑆𝐶𝑒 ( 𝑗), where 𝑗 is
an inference job performed against a model𝑚. Here, we leverage
our Embodied Product Cost metric (𝐸𝑃𝐶 (𝑚)), in order to account
for the carbon associated with the construction of a model, as well
as the embodied system cost. Thus, 𝐴𝑆𝐶𝑒 ( 𝑗) is calculated adding
in both. For a model𝑚, if the lifetime expectancy of the model is
𝐿𝑇 , for example, 3 years, and the execution time of an inference
job is 𝑡 , and there are 𝑛 parallel jobs executing at any given time,
then 𝐴𝑆𝐶𝑒 ( 𝑗) = 𝐴𝑆𝐶 ( 𝑗) + 𝐸𝑃𝐶 (𝑚)×𝑡

𝐿𝑇×𝑛 , where 𝐴𝑆𝐶 ( 𝑗) is defined as
expected, adding to 𝐽𝑆𝐶𝑒 ( 𝑗) the embodied system emission tax,
and related costs.

Again, this metric exemplifies the usefulness for fostering a
sustainability mindset. A datasetentist will be encouraged to ask
questions, such as ‘what is the right allocation of energy to train a
model based on the expected usage, and expected life time’.

2.4 Sustainability measurements for AI
For a sustainability metric to be applicable, each term of the equa-
tion needs to be measured as accurately as possible. The EPC of
the AI life-cycle comes from the infrastructure used to train, fine-
tune, and deploy the model of interest. Primarly nowadays, this
infrastructure is comisioned by cloud computing resources like
AWS, Google Cloud, Azure, or IBM Cloud, to name a few. On-prem
resources are also widely used thus expanding the heteroginity
of options available to ML developers when it comes to choosing
an AI infrastructure. For this reason, it is critical to have in hand
software tools that make the measuring of energy and carboon
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footprint easily accessible and readily available. For cloud com-
puting and applications running on containerized environments,
Kepler [17] exposes hardware metrics and power measurements
of containers running on Kubernetes or OpenShift. These metrics
are exposed through Prometheus and allow users to write queries
to aggregate energy data of different components. For workloads
running on NVIDIA GPUs it is also possible to use DCGM [10]
to collect power measurents that can be aggregated to compute
energy data. Similarly, power data can be queried directly using
nvidia-smi which comes with a driver installation for NVIDIA de-
vices. Together, Kepler and DCGM can be used to aggregate power
data of the harware components running the AI model, and can
be paired with in house tools so organizations can measure their
energy consumption for the infrastructure they use in AI, or other
applications of their interest.

3 OPPORTUNITIES
A fundamental requirement would be to establish a reliable sys-
tem to collect, store and report data concerning the power/energy
utilization across the complete lifecycle of the AI model. Such a
challenge poses significant difficulties as certain facilities may lack
the capacity for monitoring or measuring. Furthermore, even in
facilities equipped with monitoring capabilities, the methodologies
employed for measuring power/energy could vary widely, such as
how to allocate shared resources for model training. Consequently,
this issue can be bifurcated into two principal aspects: standardiza-
tion and reliable information tracking.

First and foremost, it is important to standardize the procedures
employed for measuring, collecting, and reporting power/energy/
carbon consumption data pertaining to the AI model. This measure
would enable consistent and comparable reporting metrics. This
paper takes a step towards that goal, more work is needed on
the system energy consumption, in particular in lieu of sharing.
Additionally, it is important to ensure accuracy and integrity of
the records. Models and data sets should be published with a data
sheet that reports based on the metrics. Yet another area is use case
based optimization. The first advantage of the proposed approach
is mind-set shifts in the AI model design process. Historically, AI
models have been developed with an emphasis on performance.
However, upon considering our AI lifetime observability matrics,
system designers would begin to prioritize both performance and
energy efficiency in their AI model architectures, as evidenced by
factors such as neural network depth, width, input resolution, and
parameters [13]. This would facilitate the development of AI models
that are not only high-performing but also energy-efficient, thereby
reducing the need for unnecessary training practices. In particular,
it would be necessary to develop methods to compare different life
cycle strategies in the context of use cases, i.e., re-use (and what)
vs. start from scratch.

Furthermore, this approach would allow for the identification of
inefficiencies within the various phases of AI, which could be tar-
geted for optimization. Through the implementation of scheduling
techniques and power knob configurations (such as power capping
and dynamic voltage and frequency scaling), we would be able
to enhance the utilization of each resource while simultaneously
reducing energy consumption.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a new metric to evaluate the efficiency
of AI models that associates with inference jobs the amortized life
cycle carbon cost, factoring in data preparation, pre-training, fine-
tuning, distillation, and on-going training. While other proposed
evaluation techniques andmetrics are useful for particular purposes,
we believe this metric is necessary in order to reason about life-
cycle strategies, such as, whether to train a smaller but more specific
model, or, alternatively work to fine-tune a broad model for the
target task, or, to decide on the optimal frequency of re-training, the
amount of distillation, the size of the data set, number of tokens, and
so on. These are real problems that data scientist are struggling with
in the field. Any decision can be very costly in terms of time and
energy/carbon consumption, and may lead to sub-optimal results.
Data scientists need a way to strategize about these key life cycle
decisions, and for that they need an objective function to base on.
One way to do that is through the lens of life cycle carbon cost. The
point is, that these decisions cannot be done in isolation for each
phase, because this will not reflect trade-offs such as spending more
on one phase in order to reduce cost in a downstream phase. For
example, deciding to ‘invest’ in costly NAS may result in significant
downstream efficiency improvements. In the future, we plan to
demonstrate the usefulness of the metric by using it to compare
and evaluate different life cycle strategies for realistic use cases.
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