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ABSTRACT
The growing data economy features a complex ecosystem of or-
ganizations, individuals, and devices. With digital data exchange
between entities becoming ubiquitous in modern society, there is
a need for carbon cost estimates that span the entire life cycle of
data. We argue that accounting at the granularity of an application,
process, or request can be augmented by a scheme that associates
carbon annotations with data. Such a scheme would preserve con-
tinuity between interacting entities in the data economy to ensure
that carbon costs are accounted for across the entire value chain
of data. In short, the contributions of this paper are (1) a vision
toward tracking the life cycle carbon emissions of data, as well as
(2) several techniques for reducing these life cycle costs. In particu-
lar, we define the distinction between embodied carbon from data
collection, transfer, and storage, and operational carbon from data
use.
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1 INTRODUCTION
As the amount of digital data continues to increase [72], a holistic
assessment of computing’s environmental impact must account for
the costs arising from these data. While the end of Dennard scaling
and the slowing of Moore’s law present a resource challenge for
processing these data streams at scale [24, 66], there are also costs
from collecting, transferring, and storing data [79]. By viewing
data as a good [43] that is manufactured, transported, and stored
in memory for later use, it becomes plausible that a cradle-to-grave
assessment of carbon footprint is warranted.

Except in highly specialized cases of analyzing simulated data,
data are usually collected outside of the data center. For example,
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Figure 1: Data are sold from one organization to another,
creating a value chain. D𝑖 is purchased data that links two
organizations, and each small arrow represents an applica-
tion run on D𝑖−1 to produce D𝑖 . Without emission estimates
for the linking data, accounting is effectively siloed.

an e-commerce website expends energy on customer machines to
track mouse events via Javascript. Similarly, air quality sensors in a
building might transfer their readings to the cloud, but the sensors
themselves are likely connected to the building’s electricity source.
In aggregate, estimates place the fraction of carbon emissions from
“user” devices and networking at around two-thirds of ICT’s total
emissions [30]. As edge computing increases in popularity and
viability, data centers will start to offload services to such devices [7,
51, 58, 61]. This trend illustrates why carbon accounting across edge
devices, network devices, and data centers is necessary [6, 8, 47, 86].
The heterogeneity of device types, power sources, and geographical
differences in carbon intensity make carbon accounting an acute
technical challenge [34, 79].

This paper focuses on tracking the carbon implications of the
data economy. Data are often exchanged among individuals and
organizations, which suggests the need for the attribution of emis-
sions at a finer granularity than that of a device or organization
(e.g., such as [6]). We argue that when data are exchanged at a data
market [16], the cumulative carbon cost of the data must be made
aware to the buyer (in addition to the seller). In order to enable
end-to-end value chain emissions for organizations [34, 62], the
cost of data must be derived from its entire value chain, spanning
applications in organizations both upstream and downstream from
the reporting organization (Scope 3) as is shown in Figure 1. Similarly,
in order for users to understand the carbon costs of the data that
they supply, these costs must also reflect the carbon expended after
the data are shared with other entities.

Akin to data provenance [14, 17, 32, 44], we introduce carbon
provenance as an automated life cycle assessment for the carbon
footprint of data [37]. Inspired by advancements in analyzing and
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optimizing the carbon footprint of hardware [33, 34, 75], we argue
that there is a similar notion of embodied carbon in the context of
data. Just as a device incurs a carbon cost due to manufacturing,
data incur a carbon cost at the sensor. Just as a device is housed
in a storage facility and transported to market, data are stored in
memory and transferred over a network. We denote the category of
emissions that are separated from any use of the data as embodied.
On the other hand, just as a device accumulates carbon as it is used,
a task that makes use of the data sets in motion the accumulation
of operational carbon.

Carbon provenance would annotate data with carbon emission
metadata, providing information to organizations and individuals
alike about the environmental impact of their data. We believe that
this information could enable a paradigm shift where data become
a primary target for carbon optimization, addressing emissions in
the embodied and operational categories. For example, if sensor
data are collected routinely at a high sample rate and transferred
to the cloud just to sit unused on disk, the embodied annotation
exceeding the operational annotation would indicate that there are
carbon costs that can be optimized in that category moving forward.
In this situation, there are a variety of optimizations that can be
carried out. First, the sampling rate of the sensor could be adjusted
to collect fewer data (collection). Second, an approximation of the
signal could be sent to the cloud instead of the original signal to
save bits (transfer). Third, the data could be aged to reduce the
storage requirements over time and gradually make room for other
data on the device (storage). To illustrate the importance of a life
cycle assessment for data, we estimate the magnitude of example
embodied costs for both data collection and communication.
Data Collection Costs In Figure 2, we display the estimated
embodied carbon emitted to collect 24 short webcam videos under
the assumption that power is either drawn from California (CAISO)
or the Midwest (MISO). An hourly average carbon intensity from
December 1st, 2022 was computed for each video [3, 10, 59, 60].
Processor and DRAM power were estimated via Intel RAPL [48]
while capturing frames and encoding with MJPEG [69] at 30 FPS.

The results show that the carbon cost of data collection alone
can be significant. For example, assuming that this specific personal
computer is connected to MISO on December 1st, 2022, a grid that
is similar to the current United States average for carbon intensity,
the most optimistic estimate would place the carbon emissions for
MJPEG compression of a 26 second video at 74 mg 𝐶𝑂2 equivalent,
and the most pessimistic estimate would place the value at 119 mg.
In this setting, between 3394 and 5460 26-second videos taken during
that day would produce the same amount of carbon emissions as driv-
ing an average gasoline passenger vehicle one mile (1.61 km) [4]. Data
collection costs will vary substantially according to both carbon
intensity and factors that affect the energy consumption of sensing
including the type of sensor (i.e., data modality), type of device
(e.g., smartphone), sampling rate, codec, and hardware accelerator
offloading.
Data Communication Costs In Figure 3, the carbon intensity
along the internet backbone path of a traceroute [52] execution is
displayed. In our approach, we calculate the mean carbon inten-
sity [68] over the core nodes, andmultiply by an electricity intensity
(kWh/GB) estimate [9]. Packets are routed through locations that
have variable carbon intensity. Using the emission intensity estimate

Figure 2: Estimated Energy vs. estimated embodied carbon
in milligrams on MISO (red) and CAISO (blue) grids for 24
laptop webcam videos ranging from 3 to 26 seconds.

Figure 3: Estimated path carbon intensity on May 16th, 2023
at 11:00 AM CST (size and color of the circle) between the
Midwest and a data center for a social media site. We obtain
an emission intensity estimate of 1.51 g 𝐶𝑂2 e/GB.

of 1.51 g 𝐶𝑂2 e/GB for this particular transfer, it would take 268 GB
to produce the emissions equivalent to driving an average gasoline
passenger vehicle one mile (1.61 km) [4]. To be more concrete, if a 1
GB video is uploaded to the data center and the communication path
is fixed, it would take 267 complete views of the video by users in that
region to produce the same amount of network emissions.

The paper can be summarized by two key points:
(1) Carbon Provenance. The life cycle carbon costs of data are

often hidden from decision makers, especially costs that are
distributed over multiple entities and costs that originate
outside of the data center. So, we need a way to track these
costs in an end-to-end fashion.

(2) Carbon-responsive Data. There are many unexplored car-
bon reduction opportunities in the data life cycle that can
complement existing approaches.

Fittingly, in Section 2, we discuss the estimation of carbon footprint
and the annotation machinery that is propagated alongside the
data. Equipped with carbon footprint information, in Section 3, we
describe the promise of carbon-responsive data as a framework for
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Figure 4: An example of a video life cycle in an edge archi-
tecture.

controlling emissions aside from workload shifting and designing
carbon-efficient data centers [1, 35, 47, 49, 50, 64, 81, 84].

2 CARBON ACROSS THE DATA LIFE CYCLE
A data item is the basic component that defines the granularity
of carbon accounting. For example, we can equivalently define a
data item as a single value in a spreadsheet, an entire spreadsheet,
or a collection of spreadsheets. Each data item is associated with
two annotations ⟨𝑒,𝑢⟩ that track the embodied 𝑒 and operational
𝑢 categories. We show a simple example of a video life cycle in
Figure 4 with the two categories clearly delineated. Note that the
collection of frames consumes carbon during sensing, encoding
(enc), NIC I/O, transfer between the edge and the cloud, storage
device I/O, decoding (dec), and as the frames are used for an activity
recognition task. If accounting only begins at the data center, costs
will be underestimated, although the extent of underestimation will
vary. Carbon provenance is simply metadata counters that track
the carbon footprint associated with a data item across its life cycle.

Many devices are connected to either electric grids or batter-
ies [79]. In the case of an electric grid, carbon intensity is derived
from the electricity generation sources at a given time [18]. There
are also rechargeable and disposable batteries. A rechargeable bat-
tery has a carbon intensity that is a function of the electricity carbon
intensity over the charging period [75]. However, in the case of
a disposable battery, carbon intensity could be defined according
to the embodied carbon from manufacturing the battery, since the
energy capacity is usually already known.

2.1 Carbon Headers
We envision a world where every meaningful data transfer between
entities (e.g., through an API) is annotated with a carbon footprint.
This approach is similar to [6], but we specifically define the seman-
tics of cost aggregation over multiple entities and across the full life
cycle of data. This includes costs that originate outside of the data
center. Some might argue that such an approach is wasteful and
might actually increase the overall carbon footprint of a system.
This concern is misplaced because common data transfer proto-
cols such as HTTP already contain significant header information
(such as User-Agent and X-Forwarded-For) that is employed for
responsive design and security purposes. What if HTTP requests
also contained a carbon header that allowed for a retrieving server
to optimize its decision based on carbon?

For the sake of simplicity, we model data exchange between two
parties as GET and POST operations similar to a RESTful API. Every
message is annotated with four carbon headers:

X−Message −Carbon −Embodied : < f l o a t >
X−Message −Carbon −Ope r a t i o n a l : < f l o a t >
X−Message −Unique − I d e n t i f i e r : < s t r i n g >
X−Message −Carbon −Es t ima t i on −Method : < s t r i n g >

The first header tracks all of the carbon attributed to this data
item from previous collection, transfer, and storage operations. The
second header tracks the carbon from previous use of the data
item. The third header specifies a unique identifier that enables the
aggregation of costs across entities. The fourth header indicates the
accounting standard (i.e., method) that was used to estimate those
numbers to preserve consistency.

New annotations for embodied and operational carbon are cre-
ated at the receiving entity that track the entity’s local carbon
footprint for the data item. The cost of the network transfer be-
tween the sending and receiving entities is divided amongst the
two entities. The total global footprint is then the sum of the local
costs across the entities that share a data item.

As with all such headers, they are designed for application-level
optimizations. They are not designed to be inherently secure or
trustworthy. For example, a web-browser that observes an anoma-
lously high carbon footprint from a web service might route future
requests through a different CDN. Or a company streaming data
from a data broker may decide to stop using certain data if the
carbon costs are too high.

2.2 Open-Source API for Carbon Estimation
The deployment of the principle above requires reasonably accurate
data item carbon estimates for a single entity (e.g., organization).
We are developing an open-source toolkit that allows application
developers to estimate these values on devices located outside of
a data center. We highlight the initial steps that can realize such a
vision below. Essentially, this is a baseline method that would be
placed in a carbon header.

2.2.1 On-Device Estimates. Existing energy consumption estimates
are often based on low-level power models derived from hard-
ware performance counters or external sensor measurements from
the power source [41, 45, 54, 65]. While these estimates are of-
ten accurate for the hardware, it is difficult to disaggregate the
energy estimate by process. On the other hand, existing models
for process-level energy estimation often do not make use of the
accurate estimates provided by low-level mechanisms or external
sensors [25, 56, 57], and when they do, these models are often
not comprehensive (e.g., omit DRAM or accelerators) [40]. Other
process-level approaches do not give a meaningful estimate of
energy, since the metrics are derived exclusively from operating
system statistics such as CPU usage or wakeup frequency [55].

Broadly, we seek to address these limitations by combining accu-
rate energy estimates for device hardware with process-level statistics.
In particular, we divide the process-level energy estimation task
into two phases: (1) hardware statistics gathering and (2) estima-
tion. Statistics are measured at a sampling interval of Δ seconds
and used to estimate the energy consumption of the process over
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that interval. An open question is how to best distribute energy
from a process over all of the involved data items. For example, a
directed acyclic graph that defines a workflow consists of many
tasks that produce data item outputs from data item inputs [29].
Specifically, energy can be distributed over the inputs alone, the
outputs alone, or both the inputs and outputs. Machine learning
inference is another concrete example, where energy can be attrib-
uted to the model or to the predictions themselves. We believe that
a cost model developed from a trace of pertinent system calls could
be a promising direction [71].
Hardware Statistics Gathering Phase In this phase, statistics
are collected about both energy/power and resource usage. Example
metrics include CPU usage, percent of RAM or swap occupied, and
I/O device throughput over the past sampling interval (e.g., in
MB/s) [25]. A major challenge is to ensure that the chosen metrics
are available at both the global level and process level. Hardware
statistics gathering can always be run in an online fashion to predict
energy consumption in real-time for a given data item, but certain
types of estimation models (e.g., machine learning) may require
that statistics are first gathered in an offline fashion prior to model
deployment.
Estimation Phase There are at least two plausible methods to
estimate energy consumption for device hardware. First, if readings
from an external sensor (e.g., watt meter) at the power source
are available for the particular device type [41], machine learning
can map global statistics for each hardware category to energy
consumption [8]. These training statistics could be collected by a third
party or the hardware specifications themselves could be encoded as
features to build a cross-device model. Second, one could also train
a model on low-level energy estimates that are already included
internally such as processor and DRAM; these estimates would be
combined with I/O device models that rely on a combination of
power data from manufacturer datasheets and throughput.
Machine Learning Machine learning has been used to accurately
predict data center power from CPU usage and hardware charac-
teristics [63]. The relationship between CPU usage and power is
often non-linear [28]. The problem in the process-level context is
to construct a model 𝑓 (GlobalStats) = GlobalEnergy that produces
a reasonable approximation of another function 𝑔(ProcessStats) =
ProcessEnergy where process energy cannot be directly measured. A
model is first trained to predict global device energy consumption
from global hardware statistics. The model is tested using a signed
carbon-sensitive loss function such as L = 1

𝑇

∑𝑇
𝑡=1 𝑒𝑡 − 𝑒𝑡 where

𝑒𝑡 is the model prediction for the global energy estimate, 𝑒𝑡 is the
true global energy estimate, and 𝑇 is the number of samples. A
positive value indicates that the model may overestimate the true
global energy on average, while a negative value indicates that the
model may underestimate the true global energy on average. Once
the model is tested, process-level statistics are gathered to predict
energy consumption.
Process-level I/O Device Models Input/output devices are less
likely to have embedded energy counters, so without data from an
external power sensor, it is unlikely that we can train a machine
learning model in this setting. Instead, a model that combines op-
erating system device counter statistics with power data from a

manufacturer datasheet or a third-party experiment may be a rea-
sonable alternative. Existing models for I/O devices often assume
that the power of a particular I/O state (e.g., disk read) is constant
under varying utilization [25, 56]. These models are inconsistent
with recent improvements in the energy proportionality (and asym-
metry) of certain device types such as low latency SSDs [12, 36].
Earlier work has found that SSD, HDD, and network interface card
power is often positively correlated with throughput within the
dynamic range between idle and maximum power [5, 70, 85]. We
propose that device throughput statistics (e.g., MB written or MB
sent) be sampled at a certain frequency at the process level and
combined with power data in a model, such that each model is
sensitive to the energy proportionality of the device.
Controlling Energy Overhead Adaptive sampling is a technique
that can effectively conserve energy and system resources in low-
power wireless sensor networks [42, 46, 82]. Adaptation of sample
rate is important in the context of general data collection because
the sample rate controls the end-to-end energy expenditure at the
source. The system designer can adapt the sampling rate at each
device according to energy or carbon emission constraints. Beyond
controlling the overhead of carbon provenance, adaptive sampling
can also serve as a powerful approximation method to reduce the
energy expenditure of data generation (Section 3).

2.2.2 Data Production and Transportation. Accounting for the en-
ergy expended during the data life cycle begins at the sensor, as a
digital signal is sampled. An energy estimate per data item is calcu-
lated from available sensor power information or an existing profile
from a power meter. Once the data item is in memory, annotations
⟨𝑒,𝑢⟩ are created.

During a network transfer between devices controlled by a single
entity, two possible types of operations can occur. First, amigration
operation transfers the annotations alongside the item, since the
item will only continue to be stored at the destination. Second, a
replication operation creates a new pair of annotations that will
be transferred to the destination. A data item must be assigned a
unique identifier within the organization to link these local replicas.
Broad estimates of internet transfer electricity intensity in kWh/GB
have been developed, but these estimates are often restricted to
the internet backbone [9]. Succinctly, network device reporting (or
modeling) is required to account for emissions from intra-entity
data transfer [86].

3 CARBON-RESPONSIVE DATA
In this section, we introduce carbon-responsive data, the idea that
in certain use cases, modulating the error of a data item can reduce
carbon emissions. With information on the carbon emissions of
a data item, we can begin to address questions about emission
reduction throughout the entire life cycle of data, including those
oriented toward constructing approximate representations of data to
conserve resources. Is there an effective way to conserve storage
resources when data are becoming less valuable over time without
requiring deletion? Can we reduce the retrieval carbon cost of a
popular social media photo by storing multiple lossy versions that
are each transmitted under a specific range of carbon intensities?
Or suppose that we are using Amazon Mechanical Turk to label
training data for a machine learning task, can we intelligently
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Figure 5: Adaptive compression (left) and lossy aging (right).

approve labelers based on their regional carbon intensity? All of
these questions introduce interesting trade-offs that can only be
addressed if we begin to account for carbon. The embodied and
operational categories are particularly important, because if embodied
costs far exceed operational costs, this may indicate that the item is
wasting resources as unused “dark data.”

3.1 Carbon-adaptive Approximation
Approximation, the notion of trading error for performance [19,
39, 67, 78, 80], is a technique that can reduce energy consump-
tion in certain use cases that can tolerate error. In the context of
data, many of these approximation techniques trade information
loss [23], query error [20], or model accuracy [13] for cost savings.
Specifically, manipulating error tolerances in these workloads could
reduce energy consumption, and this can be accomplished without
explicitly requiring that the workload be shifted across time or space.
Additionally, since some network devices are energy proportional
with respect to utilization [86], we describe how lossy compression
could reduce the number of packets communicated during times of
high carbon intensity. To manipulate error, we require an error pol-
icy E(CarbonIntensity) = ErrorParameter1, . . . , ErrorParameterp
that defines how the parameters that control the error will be set
according to carbon intensity. An error policy would likely be de-
fined by the user. This carbon-quality trade-off can be viewed as a
carbon-aware data market, where error is traded for a reduction in
the carbon cost of an entity’s data item.

3.1.1 Carbon-adaptive Data Science. As the demand for machine
learning grows, there is a need to reduce carbon costs both from
training and inference [13, 15, 38, 58, 73, 74, 83]. However, there
are also optimization opportunities present in other types of work-
loads, such as an aggregate query. For example, suppose that at
the start of every hour during a given day, we observe a stream of
equally-spaced sensor readings from a particulate matter 2.5 sensor.
We would like to estimate the average reading over the past hour
and immediately send the result to a weather application. Instead
of shifting the query across time or space, we can apply statistical
sampling to control the energy expenditure of the query by tolerat-
ing some error [19]. Using the current carbon intensity, a sample
size is specified by an error policy, and then the query is executed
over a random sample of readings. Another observation is that to
save additional carbon at the air quality sensor, the sampling rate
could be set according to carbon intensity, so fewer readings are
generated in the first place [42].

3.1.2 Carbon-adaptive Compression. Suppose that a user frequently
downloads the same batch of photos from cloud storage to their
mobile device. This scenario is communication-expensive, since the

primary energy expenditure is from packet transfer and decom-
pression on the user’s device. Additionally, we have little temporal
flexibility available in this instance, since it is conceivable that the
user would like to view their photos immediately. While the data
center operator may optimize the storage location according to re-
trieval frequency [31], there is a network energy cost that is higher
for frequently-retrieved photos. A predicted carbon intensity path
𝐶 = 𝑐1 → 𝑐2 → . . . → 𝑐𝑘 is constructed where 𝑐𝑖 is the carbon
intensity at node 𝑖 . Using the predicted path, the mean carbon
intensity for the nodes 𝑐 is computed.

Now, the question becomes: how do we reduce emissions given
an estimate of the spatial carbon intensity conditions between the
cloud and user device? A first idea would be to choose a more
carbon-efficient route for the photos [86]. While this approach
propagates packets along low carbon intensity routes to save carbon,
under the assumption of at least weak energy proportionality, we
describe a comparable strategy called multiresolution compression
that adapts the encoding of the data that is transmitted according
to estimated route carbon intensity.

Multiresolution compression can adapt the file size for frequently-
retrieved items according to carbon intensity. This technique is only
applied in certain lossy use cases. The core idea is to construct a
single encoding that combines sub-encodings that have different
errors. The approach is similar to adaptive streaming in that multi-
ple decodings are produced [77]. A multiresolution compression
algorithm produces a combined encoding 𝐶D that is decomposed
into sub-encodings 𝐶 𝜖1

D , . . . ,𝐶
𝜖𝑙
D such that:

𝐶D = 𝐶
𝜖1
D

⊕
𝐶
𝜖2
D

⊕
. . .

⊕
𝐶
𝜖𝑙
D (1)

where each sub-encoding has a distinct error 𝜖1, 𝜖2, . . . , 𝜖𝑙 and
⊕

denotes a combination operation [11]. To obtain a storage savings,
the sub-encodings should decrease in size as the corresponding
error increases.

In the trivial case, the combination operation reduces to a con-
catenation of the 𝑙 sub-encodings. For example, we could compress
a frequently-accessed image at 𝑙 = 2 JPEG qualities to produce two
sub-encodings of different sizes. When the carbon intensity along
the communication path is high, the smaller sub-encoding can be
transmitted, as is shown in Figure 5.

To further formalize this scheme, we can define an example error
policy E for multiresolution compression. We start by creating a
total of 𝑙 carbon intensity buckets (one for each sub-encoding):
[𝑐−1 , 𝑐

+
1 ), [𝑐

−
2 , 𝑐

+
2 ), . . . , [𝑐

−
𝑙
, 𝑐+
𝑙
) where 𝑐−

𝑖
and 𝑐+

𝑖
denote the mini-

mum and maximum carbon intensity values of the bucket (i.e.,
the bucket boundaries). In practice, it is likely that 𝑐−

𝑖
= 𝑐+

𝑖−1 so
that the buckets cover the entire range of possible carbon inten-
sity values. The error policy then maps the mean carbon intensity
𝑐 to a specific sub-encoding 𝐶

𝜖𝑖
D like so: E(𝑐) = 𝐶

𝜖𝑖
D . In particu-

lar, if the predicted mean carbon intensity 𝑐 falls in bucket 𝑖 , the
corresponding sub-encoding 𝐶 𝜖𝑖

D is transmitted.
There is an extra storage cost in multiresolution compression,

roughly upper bounded by the size of concatenating 𝑙 − 1 sub-
encodings, but this cost could potentially be justified by a reduction
in retrieval latency and communication carbon emissions. There
is also an extra energy cost due to the additional work that is per-
formed during encoding and storage writes. If these costs can be
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minimized, we believe that this compression technique can improve
the communication carbon efficiency of certain frequently-accessed
items. Although multiresolution provides a routing-agnostic frame-
work for reducing network emissions in frequently-transmitted
data items, there is another category of data items that could also
benefit from carbon optimization—those that are progressively be-
coming less valuable to the owner over time.

3.2 Lossy Data Aging
In the below discussion, we pivot to exploring the relationship
between data item value and carbon costs from both operational
energy and hardware manufacturing. In doing so, we describe a
technique that recursively approximates data at regular time inter-
vals to reduce storage and network resource requirements.

As the number of bits in storage and in transit increases over time,
new approaches beyond scaling carbon-intensive infrastructure
to match the growth in data are required. One such approach is
disposal by design, where policies are defined to either discard items
that are no longer useful or to reduce the quality of items that
are becoming less useful [21, 22, 53]. A data item occupies space
in a storage device that may have a high manufacturing carbon
cost [76]. Similarly, retrieval requests transmit a data item over
networks that must provision sufficient physical infrastructure to
support the volume of data in transit [9, 86]. We argue that disposal
by design can optimize storage and network resources, preventing
future manufacturing emissions that would arise from increasing
resource capacity to match the growth in the volume of ingested data.

A data item that is no longer needed can be deleted by a lossless
disposal by design policy. There are also situations where lossy
disposal by design can reduce the quality of the item. We can make
such a reduction in quality concrete via the data wrinkle, an object
capturing a lossy bit reduction operation on a data item. A data item
can accumulate data wrinkles as it ages, progressively reducing
the number of bits allocated for that item. Note the caveat that a
data wrinkle is only applied to an item that can tolerate information
loss. For example, financial reporting information often needs to
be retained in a lossless form, while a photo can tolerate error
in resolution and pixel intensity. Departing from a static view of
the error-space trade-off, data wrinkles dynamically introduce error
across time in an incremental, recursive fashion to progressively reduce
storage size. Intuitively, a data wrinkle spans the grey area between
retention and deletion.

While the idea of adding error over time may at first seem to
only apply to a limited number of use cases, we argue that privacy,
and more specifically differential privacy, are motivating reasons
for why this approach could be considered more broadly appli-
cable [27]. Mechanisms in differential privacy add noise from a
distribution such as Laplace [26] to provide a formal guarantee on
individual privacy. The key observation is that these mechanisms
are structurally similar to approximation (e.g., compression with
uniform quantization). In differential privacy, error is seen as an
beneficial quantity. To improve the generality of a data wrinkle,
we pose an open question similar to the authors of [2]: are there
ways in which approximation error can improve individual pri-
vacy while simultaneously improving communication and storage
carbon efficiency?

3.2.1 The Data Wrinkle. Consider a data item D such as a spread-
sheet table or a photo. Define an (𝜖, 𝛽)-data wrinkle with respect
to D where error 𝜖 is traded for a strictly-positive bit reduction
𝛽 > 0 via an approximation operation. The specific approximation
operation is kept abstract, but examples include lossy compression,
a text summary, or cropping a photo. The definition of a data wrin-
kle is not overly restrictive in that approximation can be applied to
only part of the data item.

3.2.2 Lossy Aging Over Time. Consider multiple data wrinkles that
are applied over time. LetD𝑡 denote the current state of a data item
D at time step 𝑡 . A user captures a photo D0 on their device and
transfers the photo to cloud storage. In the conventional case, an
image codec such as JPEG [78] would compress the user’s image
once after collection (a single data wrinkle), and the compressed
image would be represented as 𝑏 bits for any subsequent network
or storage operation until deletion. In its most basic form, JPEG
forces high frequency discrete cosine transform coefficients to zero
by applying a quantization matrix that introduces error. Defining
the quantization matrix once is the standard approach, making an
assumption that the user’s tolerance for error never changes as the
photo grows older. This is precisely the assumption that we challenge
in the formulation of a data wrinkle, where multiple lossy operations
could be applied over time. For example, photo quality may become
less important to a user over time.

At each year 𝑡 , the user is given the option to further reduce the
quality of the image by 𝜖𝑡 to save 𝛽𝑡 bits in paid storage. In the
running example, the quality of the image could be further reduced
by applying a new quantization matrix to the remaining non-zero
coefficients. Each year 𝑡 that the user error tolerance increases, a
data wrinkle D𝑡 = A(D𝑡−1, 𝜖𝑡 ) is applied to save 𝛽𝑡 bits where A
is an approximation operation. Otherwise, the data item remains
unchanged D𝑡 = D𝑡−1. A space savings of 𝑏 − ∑𝑡

𝑖=1 𝛽𝑖 bits is
achieved where 𝑏 denotes the size in bits of the original compressed
photo and 𝛽𝑖 = 0 ifD𝑖 = D𝑖−1. This process is illustrated in Figure 5.
While there is some carbon overhead from recursive approximation
when compared to a single approximation step, we believe that
in the long run, data wrinkles could serve as a viable alternative
to deletion for certain use cases when applied over longer time
intervals (e.g., years).

4 CONCLUSION
We presented a vision for carbon provenance, a life cycle assess-
ment for the carbon footprint of data. We described techniques to
perform carbon accounting for a data item both within and across
entities, as well as the technical challenges of realizing our vision.
Carbon-responsive data was introduced as a framework to reduce
carbon emissions on a per-data item basis. Although this life cycle
assessment is currently restricted to hardware energy use, there
are open questions concerning the apportionment of hardware
embodied carbon among data items.
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