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ABSTRACT
To reduce the carbon footprint of software, it is imperative that

systems first become aware of their footprint. Despite various pro-

posals to make software carbon aware via application-level devel-

opment kits, we believe awareness of and adjustment to carbon-

emission information is an operating-system duty—similar to how

it manages time information today. In this paper, we motivate and

envision carbond, a Linux-based service to mediate carbon informa-

tion between hardware (including power supply) and application-

level software. Following the recently established Software Carbon
Intensity (SCI) standard, carbond deals with operational as well as

embodied emissions and has different units of work (low level as

CPU cycle up to high-level as user request) in mind. In addition to

the service itself, we showcase how it can be used by application

SDKs (libraries) as well as command-line utilities.

CCS CONCEPTS
• Hardware→ Impact on the environment; Power estimation

and optimization.

KEYWORDS
embodied emissions, Linux, operational emissions, power supply,

sustainability
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1 INTRODUCTION
Since the early days of computing systems, operating systems (OS)

are required to share available system resources among system

users and processes. Time sharing [11] is the key concept to account

and distribute available clock cycles of CPUs in this case—from the

first multi-user systems of the 1960s [10] to the cloud-computing

systems [3] of today this concept is still dominant. Today, additional

resources besides time are considered in the efficient operation of

computer systems and data centres, namely power and energy [24].
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Modern operating systems such as Linux track the use of re-

sources (i.e. time, power, energy) at the process-level and provide

system-level interfaces (i.e. perf(1)) to analyse and debug resource-
usage patterns of user-space applications. The availability of such

system-level interfaces establishes a resource awareness that was
previously unavailable to system programmers and users. What is

yet missing, however, are methods to attribute and trace the carbon

use of system activities (i.e. at process and application level).

Tracking carbon emissions is essential to keep computing ac-

countable for their contribution to global warming—where the

current projection is non-ideal [21, 7]. In contrast to other domains

(e.g. transport), (a) carbon emissions cannot be measured directly

for computing (cf. car emission tests), and (b) workloads can be

finely grained (single car trip vs. end-user web request). Hence, we

must attribute past embodied emissions (to produce the hardware)

and current operational emissions (to power the hardware) to cur-

rent workloads (the software providing a service). Both emission

types come in (different) forms of demanded energy, which have

individual carbon intensities (
gCO

2

kWh
) that must be considered.

In this paper, we discuss the constructive way towards the goal

of establishing carbon awareness for software and present carbond,
a Linux system daemon(7) to provide information on carbon use

of software components. The contributions are three-fold:

• We discuss requirements for an operating-system service

that provides carbon awareness—both for operational as well

as embodied carbon.

• We propose carbond, a prototypical implementation of such

a service together with different use cases.

• We discuss further steps towards carbon-aware computing.

Next, Sec. 2 introduces different carbon tracking metrics. Our

prototypical OS service is presented in Sec. 3, followed by its use

cases in Sec. 4. We close with a conclusion and outlook in Sec. 5.

2 CARBON METRICS
Before it is even possible to reduce the carbon footprint of software

systems [19], it is important to accurately measure it. Unlike vehicle

driving emissions, for example, the carbon footprint of a workload

running on a software system cannot be directly measured and

tracked. The reason for that is that there are not only the current

operational emissions 𝑂 caused by the energy consumption of the

hardware but also a share of the (past) embodied emissions𝑀 . The

latter includes all the carbon emitted during the production and

disposal of the hardware device [27]. While operational emissions

are highly dynamic and depend on the current carbon intensity of

our energy source, embodied emissions can be estimated once and

assumed to remain constant for each piece of hardware.

Essentially, carbon measurement is about measuring energy de-

mands with different carbon intensities. This is already difficult
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Table 1: Comparing Metrics for Carbon (Efficiency).

↓ Supported Property Metric→ PUE CUE GPUE CCI SCI

Operational Energy Efficiency Ë Ë Ë Ë Ë
Operational Carbon Efficiency é Ë Ë Ë Ë
Manufacturing Efficiency é é é Ë Ë
Reuse of Existing Devices é é é Ë Ë
Fine-grained Units of Work é é é ? Ë

as there is no single solution for tracking energy demand at all

required granularities, down from a single function call up to an

entire end-to-end request [1]. At the same time, reliable sources of

carbon intensity are hard to find. For operational intensity, various

sources exist—some of them even include scientific investigations

on their adequacy.
1
For embodied intensity, manufacturers execute

Life Cycle Analysis (LCA) (e.g. [12]) to assign a total embodied car-

bon footprint to a piece of hardware. Together with evaluations on

the typical capacity of a piece of hardware (e.g. supported memory

accesses) one is able to formulate emissions per functional unit (i.e.

intensity). This relies on both the LCA as well as the expected

performance to be adequate—making it an intricate task.

Historically, data-centre sustainability metrics have typically

been based solely on energy consumption, ignoring the source of

the energy. This changed recently due to global efforts of decarboni-

sation in response to climate change, highlighting the need for new

metrics that focus on carbon awareness [8, 13]. Before presenting

the metric we use in more detail, we provide an overview and com-

parison of carbon metrics that have been proposed in the literature.

The ideal carbon metric should reward operational efficiency in

terms of carbon and therefore energy. The metric should also reflect

the embodied emissions to produce the hardware and favour the

reuse of existing equipment over the purchase of new hardware, as

the former is associated with lower embodied emissions. Finally,

the metric should be able to accurately analyse any software appli-

cation, e.g. from a large cloud system to a small personal computer.

To be useful, the score should only improve as carbon emissions

are reduced, thereby encouraging sustainable computing.

Our comparison is summarised in Tab. 1. The Power Usage Effec-

tiveness (PUE) [4] metric is not exactly a carbon-aware metric—but

it is widely used to evaluate the energetic efficiency of data centres.

PUE is the ratio of the data centre’s total energy consumption (in-

cluding UPS, cooling, lighting) to the energy consumption of the

IT equipment alone (i.e. necessary hardware used for computing,

storage, and networking). The ideal value is 1.0, i.e. all energy is

consumed by IT equipment only. As PUE only considers energy con-

sumption and ignores the carbon intensity of the energy source, the

Carbon Usage Effectiveness (CUE) [5] metric was created. Similar

to PUE, it is defined as the ratio of the total CO2 emissions caused

by the total energy consumption of the data centre to the energy

consumption of the IT equipment alone. Here, the optimal value is

0.0, meaning that the data centre would emit zero carbon. Green

PUE (GPUE) [17] is another carbon-aware extension of PUE that

considers the weighted sum of the carbon intensities of the energy

sources used. Both the CUE and GPUE share that they do not incor-

porate embodied emissions at all. Two metrics that consider both

1https://www.watttime.org/marginal-emissions-methodology/

operational and embodied emissions are the Computational Carbon

Intensity (CCI) [26] and the Software Carbon Intensity (SCI) [15].

Both metrics are defined as a rate of carbon emissions per unit of

computational work. This means that both metrics can be used to

reason about fine-grained units of work, such as individual API

requests. However, the CCI still measures the lifetime carbon im-

pact and then provides amortised carbon emissions per operation.

In contrast, the SCI is defined so that the operational emissions of

arbitrary workloads can be explicitly analysed. For this reason, and

because the SCI has been submitted to ISO for standardisation in

February 2023, we use the SCI for carbond.

Software Carbon Intensity (SCI)
The SCI [15] can accurately capture the carbon footprint of a soft-

ware system, including both operational and embodied emissions.

SCI is a rate of carbon emissions for a software system, i.e. the

amount of carbon emissions𝐶 (measured in gCO
2
) per arbitrary but

fixed unit of work 𝑅. The SCI score is calculated as SCI = 𝐶
𝑅
= 𝑂+𝑀

𝑅
.

Formally, operational emissions are given by 𝑂 = 𝐸 · 𝐼 , where
𝐸 is the total energy (in kWh) consumed by the software system

and 𝐼 is the current power supply’s carbon intensity (in
gCO

2

kWh
),

i.e. how much carbon was emitted to produce one kWh of energy.

Embodied emissions are given by 𝑀 = TE · TS · RS, where TE are

the total embodied emissions, TS is the time-share (fraction of the

total lifespan of the hardware used by the software), and RS is the
resource-share (fraction of the total available hardware resources

reserved by the software).

This last part makes measuring the carbon footprint of software

systems intricate, as the correctness of the metric depends on an

accurate estimate of the expected hardware lifetime. By underap-

proximating, we attribute a too high footprint to each workload

during the lifespan and a zero footprint to workloads used beyond

the hardware’s lifespan. On the contrary, if the hardware fails be-

fore the expected lifespan, some embodied emissions remain that

can no longer be attributed to any workload.

Therefore, carbond must be aware of (i) the current power sup-

ply carbon intensity 𝐼 , (ii) the total energy 𝐸 required to perform a

task 𝑅 and (iii) for any involved piece of hardware its total embod-

ied emissions TE and anticipated lifespan as well as the respective

time-share TS and resource-share RS for a given task 𝑅. In addition,

carbond will need to translate single app-level tasks (e.g. user re-

quest or API call) into different hardware-level workloads (e.g. 10

CPU cycles or allocation of 4kB).

3 CARBOND
carbond forms an abstraction layer in between hardware and appli-

cation software (cf. Fig. 1). With this additional layer, energy-aware

software is able to access operational and embodied carbon intensity

data for supported hardware components via an application-facing

API provided by carbond. For that, carbond needs to collect these

intensities and periodically update them if appropriate.

3.1 Interfaces
An application-facing API, accessible to all processes with read

permissions, is realised by storing collected intensity data in the file

system. Applications can read the files directly or use an existing

https://www.watttime.org/marginal-emissions-methodology/
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Figure 1: System architecture of carbond (embedded emis-
sions dark hatched, operational ones light hatched).

library that implements this functionality. As some intensities are

subject to change (e.g. for the power supply), applications must

listen to file system updates by carbond via a subscription mecha-

nism (e.g. by monitoring file system events with inotify).
2
The SCI

can then be recalculated using the updated intensities.

To store operational and embodied carbon intensities in a log-

ical structure, we create a file tree in /var/carbond containing

storage files for each supported hardware component organised

into categories (subdirectories) such as power, storage, network or

processing. Before exposing a value for the operational intensity,
it is important to distinguish between battery-powered systems

and those without a battery. In the case where the system has no

battery or has a battery but is plugged in, the operational intensity
at a time 𝑡 is equal to the intensity of the external power source

𝐼ext (𝑡), while for unplugged battery-powered systems, the intensity

is equal to the internal carbon intensity of the battery 𝐼int (𝑡). In
order to always write the currently valid operational intensity to

the file system, carbondmust know about the presence of a battery

and monitor any changes in the state of charging. For embodied
intensities, on the other hand, it is sufficient to compute and store

𝑀𝑐 once for each component 𝑐 . This value remains valid unless the

component is replaced or another resource-share 𝑅𝑆𝑐 is applied.

A CPU, for example, could have the supported unit of work cycle
with𝑀cpu = 10

ngCO
2

cycle .

3.2 Embodied Emissions
Systems are composed of several different components, each of

which embodies a specific amount of carbon that was emitted dur-

ing production. Moreover, each component has an
3
associated unit

of work (cycle, 8kB allocated memory). Workloads running on a

system consist of multiple smaller hardware tasks that can be trans-

lated into a collection of units of work. Since workloads do not

always include all components, the attributed embodied emission𝑀

varies between workloads. For example, a workload consisting of

25× cycle (CPU) and 5×8kB allocated memory, will involve at least
the CPU and memory but not necessarily a GPU or data drive. The

set of components running the smaller hardware tasks of work-

load 𝑅 is defined as hwR = {𝑐 | 𝑐 is component and used in 𝑅} and
can be used to compute𝑀 associated with 𝑅 (𝑀𝑅 ), as

𝑀𝑅 =
∑︁

𝑐∈hwR

𝑀𝑐 · 𝑅𝑐

2https://manpages.ubuntu.com/manpages/bionic/man7/inotify
3
One for now, later we could imagine providing a catalogue of work units.

where𝑀𝑐 is the embodied emission of component 𝑐 , and 𝑅𝑐 is the

number of performed units of work of 𝑐 . Referring back to SCI , we
have𝑀𝑐 = TEc · TSc · RSc .

Unfortunately, TE𝑐 and TS𝑐 are not known and must be deter-

mined. For TE𝑐 , possible solutions include having each device sup-

ply such a value itself, up to defining the values in a configuration

file, which are then picked up by carbond. Estimating realistic

amounts of embodied carbon is an open research question and is

the focus of papers such as [20]. Furthermore, to determine the

component’s time-share TS𝑐 the projected lifetime 𝑇BC of the com-

ponent needs to be approximated. Having an estimation of 𝑇BC
and the duration 𝑇—equal to the time one unit of work takes to

execute—it is possible to calculate TS𝑐 = 𝑇
𝑇BC

. Given a resource-

share RS𝑐 (e.g. 1
4
if using 1 of 4 cores of a CPU), the component’s

embodied emission is calculated as 𝑀𝑐 = TE𝑐 · 𝑇
𝑇BC

· RS𝑐 , given in

gCO
2
divided by the components unit of work. Substituting the for-

mula for𝑀𝑐 into the formula for𝑀𝑅 , the total embodied emission

of the workload 𝑅 is equal to

𝑀𝑅 =
∑︁

𝑐∈hwR

TE𝑐 ·
𝑇

𝑇BC
· RS𝑐 · 𝑅𝑐

3.3 Operational Emissions
In operation, the only way for a computing system to cause emis-

sions is by operational energy. This energy can either be supplied

through an external source (i.e. system is plugged in) or a battery

storage (i.e. system is unplugged). carbond should handle these

two cases transparently, hence the current carbon intensity is either

the intensity of the external source or the battery. For the external

source, we use WattTime or ElectricityMap to retrieve localised

data—other options are discussed in Sec. 5.

As of today, there is no notion of carbon intensity of battery-

driven power supply. Our proposal is to leverage the intensity of

the external source and track the charging of the battery. While

the battery is charged with energy that can later be used, it also

charges emissions (proportional to the current intensity and the

amount of charged energy). When we later discharge the battery,

the intensity becomes this accumulated intensity of the battery.

Formally, the battery must keep track of its current energy level

𝐸bat (measured in J or kWh) and the absolute value of its accu-

mulated carbon emissions 𝐶bat (measured in gCO
2
). The internal

carbon intensity of the battery at a given time 𝑡 can then be calcu-

lated as 𝐼int (𝑡) = 𝐶bat (𝑡)/𝐸bat (𝑡).
When a battery is charged with a given power 𝑃 (𝑡) (measured

in W), its energy level at time 𝑡 depends only on the power and can

be calculated as

𝐸bat (𝑡) = 𝐸0 +
∫ 𝑡

0

𝑃 (𝑡) d𝑡

where 𝐸0 is the initial energy level in the battery at time 𝑡 = 0. This

formula also holds in the case of discharge, i.e. when 𝑃 < 0.

Similarly, the carbon emissions inside the battery increase during

charging. However, the slope of the increase depends on the current

carbon intensity of the external energy source. It is given by

𝐶bat (𝑡) = 𝐶0 +
∫ 𝑡

0

𝑃 (𝑡) · 𝐼ext (𝑡) d𝑡

https://manpages.ubuntu.com/manpages/bionic/man7/inotify
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where 𝐶0 is the initial amount of carbon (in gCO
2
) in the battery

at time 𝑡 = 0.

Discharging the battery, i.e. using the energy to power some task,

will cause the internal amount of carbon to decrease. However, the

internal carbon intensity remains constant during the discharge

period, because no external energy is added. Formally, 𝐶bat (𝑡) is
given by

𝐶bat (𝑡) = 𝐶0 +
∫ 𝑡

0

𝑃 (𝑡) · 𝐼int (𝑡) d𝑡 = 𝐶0 +
𝐶0

𝐸0

∫ 𝑡

0

𝑃 (𝑡) d𝑡

Of course, charging and discharging can be done simultaneously.

However, there are several ways to handle this. In this paper, we

have decided to always consider the battery as a buffer between

the external power source and the hardware to be powered. This

simplifies the calculations and allows us to use the canonical com-

bination of the two formulae for charge and discharge. In some

situations, however, this behaviour may be undesirable. For exam-

ple, consider a battery with a currently high 𝐼bat that is now being

charged with carbon-free energy and simultaneously being used to

power some task. In our scenario, the green energy would be used

to improve 𝐼bat over time, and the task would be attributed with

the dirty energy from the battery. Which modelling strategy to use

is a point for future discussion.

Fig. 2 illustrates this. Between time 𝑡0 to 𝑡1, the battery is charged

with a constant rate 𝑃 (𝑡). Then, the external power source is dis-
connected, and the energy stored in the battery is used to power

a task (again at constant power) until it is completely depleted

at 𝑡2. The top graph shows the carbon intensity 𝐼ext of the external

power source over time for the relevant charging period. Assum-

ing a piecewise constant step function is realistic, e.g. due to rate

limits of the external data source. The same graph also shows the

internal carbon intensity 𝐼int of the battery. Starting from an initial

intensity, given by the ratio of the initial amount of carbon 𝐶0 to

the stored energy 𝐸0, 𝐼int follows the movement of 𝐼ext and remains

constant once the external power source is disconnected at 𝑡1. The

lower graph shows the state of charge 𝐸bat over time as well as the

absolute value of the accumulated carbon emissions𝐶bat . Since the

(dis)charging power is constant, the stored energy evolves linearly.

However, the stored carbon emissions increase irregularly, depend-

ing on the current 𝐼ext . During discharging, 𝐶bat and 𝐸bat decrease

linearly in such a way that their ratio remains constant and that

they reach zero at exactly the same time 𝑡2.

4 CARBOND IN USE
We envision use cases at different levels of abstraction for carbond:

Sub Process Level. As mentioned in [1], there is interest in track-

ing carbon down to the level of requests (e.g. web requests). Hence,
there must be libraries for common programming languages that

(a) track resource consumption on a logical level (e.g. used memory)

and (b) query carbond to compute how much carbon was emitted

by a certain request. Our Rust library resource-gauge [23] could

leverage this, as it already allows to annotate functions but also data

with resource requirements—generating runtime monitoring code

where necessary. Similar monitoring approaches could be created

for carbon; including the enforcement of certain emission limits.
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Figure 2: Example of the operational emissions of a battery.

Process Level. One possible use case for carbond at process level

is the generation of flame graphs [16]. Flame graphs are a well-

known tool to visualise the resource demand of applications, for

example, CPU time or memory demand on a per-function level.

Subfig. 3a shows an example of a flame graph analysing a mariadb
database serving a calendar server. From the flame graph follows

that in this instance most connections handle SELECT queries. Un-
surprisingly, the JOIN operations are main contributors to the CPU

time for handling a SELECT.
Although already distinctly helpful for developers to detect hot

spots (i.e. excessive CPU time spending), flame graphs in the current

form provide no insight into the carbon emissions of application

parts. Subfigs. 3b and 3c exemplary show flame graphs visualising

the carbon emissions of the same database as shown in Subfig. 3a.

Both carbon-emission flame graphs are not based on actual values

but act as an example of howwe envision a flame graph visualisation

enriched with carbon-emission data as provided by carbond.
Subfigs. 3a and 3b show the same database scenario visualising

CPU time and carbon emissions, respectively. As block IO oper-

ations require a dedicated block device (e.g. HDD, SSD), the re-

spective IO operations must also account for the block device’s

carbon emissions. Hence, diagrams of CPU time and carbon emis-

sions vary as significantly as shown in Fig. 3. In particular, func-

tions handling filesystem access (e.g. vfs_write() (orange)) show

significantly wider frames. In the flame-graph notation, a wider

frame denotes more usage of the visualised resource (i.e. carbon

emissions in this case). This can be seen, for example, by look-

ing at the mysql_execute_command() (red) function. The biggest
CPU-time contributor for this function is the JOIN::exec() (green)
function. For the carbon emissions, however, the contribution of

JOIN::exec() is minor compared to JOIN::optimize() (green)

and Create_tmp_table::finalize() (green) so that the function
JOIN::exec() is not even shown anymore in the flame graph. The

reason for this is that JOIN::exec() involves no filesystem access,

whereas the other two functions write temporary results to the

filesystem. Hence, the hot spots for spent CPU time and for carbon

emissions may vary significantly, and flame graphs enriched with

carbond data can help developers to identify the carbon-emission

hot spots in their applications. Additionally, it is possible to account
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Figure 3: Flame graphs showing a mariadb database serving
a calendar server. Subfig. 3a shows the CPU time distribution
and Subfigs. 3b and 3c show how we envision flame graphs
visualising the carbon emissions of the database at different
points in time (not based on actual data).

for different carbon-emission levels depending on the current foot-

print of operational emissions. To this end, Subfig. 3c shows a flame

graph visualising the carbon emissions at a point in time with a

more favourable footprint for the operational emissions.

Besides flame graphs, a natural use case for carbond is the per-
formance analysis tool perf. perf is a CLI tool capable of deep

analyses of an application’s performance. For example, by the use

of Performance Monitor Counters (PMCs), an inspection of the cache

hit rate, branch-prediction performance, and even the energy con-

sumption (using the Intel Running Average Power Limit interface)
is possible. carbond provides the building blocks to expand perf’s
analysis capabilities with a convenient and well-known way to

determine the carbon emissions of running an application.

Existing Tools. We believe that the plethora of carbon awareness

and carbon-aware tools that are developed right now can bene-

fit from a common platform such as carbond. The Carbon Aware

SDK [14] currently has no support for embodied carbon and could

hence use our approach. A programming model such as Eco [28]

as well as a programming framework such as Green [6] could draw

carbon data from carbond. In a similar fashion, programming lan-

guage extensions such as EnerJ [22] and Energy Types [9] could use

cleanness states (Dirty/Clean) instead of power states (High/Low)

to adapt to at runtime (i.e. by using approximate computing in

unsustainable scenarios). Recently, there is an increased interest

in Performance Interfaces (e.g. [18]), which could not only predict

cycles / energy of certain blocks of code, but a carbon footprint

directly—based on carbond information. We further believe that

the virtual energy system Ecoviser [25] can work together with

carbond to provide its service to containerised applications—or in-

tegrate with Treehouse [2]. Finally, integration into carbon-aware

networking approaches [29] is of great interest.

5 CONCLUSION & OUTLOOK
In this paper, we presented our design for carbon awareness as
an operating-system service. Our prototype carbond leverages the
mathematical framework of the Software Carbon Intensity to re-

trieve, measure, manage, and expose intensities of both the current

power supply as well as individual hardware components. We mo-

tivated multiple usage cases for carbond to support both carbon-

aware applications as well as other operating systems services. We

envision future work to be done in the following areas:

Data Sources for Intensity and Embodied Carbon. While carbond
is agnostic to the quality of its data sources, only realistic data

fosters carbon awareness. In an ideal future, both the current carbon

intensity of grid energy as well as the embodied carbon footprint

of a piece of hardware are available openly and free of charge.

Network Carbon Protocol. Given the increasing importance of

carbon intensity data, we suggest the development of the ncp (Net-

work Carbon Protocol). Being similar to ntp for time but leveraging

the smart grid to exchange information. For example, a smart meter

could broadcast the current power intensity into the home network,

making every device aware. In houses with access to other sources

than residential supply, the fact that currently power is coming

from own solar energy can be broadcast to devices.
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Carbon-Aware Battery. We sketched out an OS-level solution to

track the carbon intensity of a battery across charging and discharg-

ing. However, this ignores the situation where no OS is running to

detect charging or passive discharging (due to storing the battery

unused). Ideally, future batteries come with a similar solution to

ours that enables them to track their carbon intensity.

ACKNOWLEDGMENTS
This work was funded by the German Research Foundation (DFG)

project number 502228341 (“Memento”), 465958100 (“NEON”), and

389792660 as part of TRR 248 – CPEC
4
and from the Bundesminis-

terium für Bildung and Forschung (BMBF, Federal Ministry of Edu-

cation and Research) in Germany for the project AI-NET-ANTILLAS

16KIS1315. Luis Gerhorst’s contribution to this workwasmade prior

to his employment at Amazon.

4https://perspicuous-computing.science

AVAILABILITY
The source code of carbond is published under the MIT license and

freely available at https://doi.org/10.5281/zenodo.8063846.

REFERENCES
[1] Vaastav Anand, Zhiqiang Xie, Matheus Stolet, Roberta De Viti, Thomas David-

son, Reyhaneh Karimipour, Safya Alzayat, and Jonathan Mace. 2022. The Odd

One Out: Energy is not like Other Metrics. In Proceedings of the 1st Workshop
on Sustainable Computer Systems Design and Implementation (HotCarbon 2022).

[2] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene

Zhang. 2022. Treehouse: a case for carbon-aware datacenter software. In Pro-
ceedings of the 1st Workshop on Sustainable Computer Systems Design and
Implementation (HotCarbon 2022).

[3] Michael Armbrust et al. 2009. Above the Clouds: A Berkeley View of Cloud

Computing. Tech. rep. UCB/EECS-2009-28. EECS Department, University of

California, Berkeley, (Feb. 2009).

[4] Victor Avelar, Dan Azevedo, and Alan French. 2012. PUE™: A Comprehensive

Examination of the Metric. White paper #49. The Green Grid.

[5] Dan Azevedo, Michael Patterson, Jack Pouchet, and Roger Tipley. 2010. Carbon

Usage Effectiveness (CUE): A Green Grid Data Center Sustainability Metric.

White paper #32. The Green Grid.

[6] Woongki Baek and Trishul M. Chilimbi. 2010. Green: a framework for sup-

porting energy-conscious programming using controlled approximation. In

Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2010), 198–209. doi: 10.1145/1806596.180
6620.

[7] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. 2022. Sustain-

able computing–without the hot air. In Proceedings of the 1st Workshop on
Sustainable Computer Systems Design and Implementation (HotCarbon 2022).

[8] Andrew A. Chien, Chaojie Zhang, Liuzixuan Lin, and Varsha Rao. 2022. Beyond

PUE: Flexible datacenters empowering the cloud to decarbonize. In Proceedings
of the 1st Workshop on Sustainable Computer Systems Design and Implementation
(HotCarbon 2022).

[9] Michael Cohen, Haitao Steve Zhu, Senem Ezgi Emgin, and Yu David Liu. 2012.

Energy types. In Proceedings of the 27th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2012), 831–850. doi: 10.1145/2384616.2384676.

[10] Fernando J Corbató and Victor A Vyssotsky. 1965. Introduction and overview of

the multics system. In Proceedings of the AFIPS Fall Joint Computer Conferences
Joint Computer Conference, Part I. doi: 10.1145/1463891.1463912.

[11] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley. 1962. An

experimental time-sharing system. In Proceedings of the AIEE/IRE Spring Joint
Computer Conference, 335–344. doi: 10.1145/1460833.1460871.

[12] Fujitsu. 2021. Product life cycle assessment of fujitsu esprimo p9010 desktop pc.

(2021). https://www.fujitsu.com/global/documents/about/environmen
t/Life%20cycle%20analyses%20of%20Fujitsu%20Desktop%20ESPRIMO%2
0P9010%20June%202021.pdf.

[13] Anshul Gandhi et al. 2022. Metrics for sustainability in data centers. In Pro-
ceedings of the 1st Workshop on Sustainable Computer Systems Design and
Implementation (HotCarbon 2022).

[14] Green Software Foundation. 2023. Carbon Aware SDK. (2023). https://gith
ub.com/Green-Software-Foundation/carbon-aware-sdk.

[15] Green Software Foundation. 2021. Software Carbon Intensity Standard. Ver-

sion 1.0.0. (Nov. 1, 2021). https://github.com/Green-Software-Foundati
on/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Int
ensity_Specification.md.

[16] Brendan Gregg. 2016. The flame graph. Communications of the ACM, 59, 6,

48–57. doi: 10.1145/2909476.
[17] Fawaz Al-Hazemi, Alaelddin Fuad Yousif Mohammed, Lemi Isaac Yoseke Laku,

and Rayan Alanazi. 2019. PUE or GPUE: A carbon-aware metric for data centers.

In Proceedings of the 21st International Conference on Advanced Communication
Technology, ICACT 2019. IEEE, 38–41. doi: 10.23919/ICACT.2019.8701895.

[18] Rishabh R. Iyer, Katerina J. Argyraki, and George Candea. 2022. Performance

interfaces for network functions. In Proceedings of the 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 2022).

[19] Colleen Josephson, Nicola Peill-Moelter, Zhelong Pan, Ben Pfaff, and Victor

Firoiu. 2022. The sky is not the limit: untapped opportunities for green com-

puting. In Proceedings of the 1st Workshop on Sustainable Computer Systems
Design and Implementation (HotCarbon 2022).

[20] Donald Kline Jr., Nikolas Parshook, Xiaoyu Ge, Erik Brunvand, Rami G.Melhem,

Panos K. Chrysanthis, and Alex K. Jones. 2019. Greenchip: A tool for evaluating

holistic sustainability of modern computing systems. Sustainable Computing:
Informatics and Systems, 22, 322–332. doi: 10.1016/j.suscom.2017.10.001.

[21] Mark Pesce. 2021. Cloud computing’s coming energy crisis – the cloud’s elec-

tricity needs are growing unsustainably. IEEE Spectrum. https://spectrum
.ieee.org/cloud-computings-coming-energy-crisis.

[22] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam,

Luis Ceze, and Dan Grossman. 2011. Enerj: approximate data types for safe

and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2011),
164–174. doi: 10.1145/1993498.1993518.

[23] Andreas Schmidt, Luis Gerhorst, Kai Vogelgesang, and Timo Hönig. 2023.

ResourceGauge: enabling resource-aware software components. In Proceedings
of the 17th Annual Workshop on Operating Systems Platforms for Embedded
Real-Time applications (ECRTS-OSPERT 2023).

[24] Amit Sinha. 2001. Energy efficient operating systems and software. Ph.D. Disser-
tation. Massachusetts Institute of Technology. http://hdl.handle.net/172
1.1/86773.

[25] Abel Souza, Noman Bashir, Jorge Murillo, Walid A. Hanafy, Qianlin Liang,

David E. Irwin, and Prashant J. Shenoy. 2023. Ecovisor: A virtual energy system

for carbon-efficient applications. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2023), 252–265. doi: 10.1145/3575693.3575709.

[26] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto. 2023. Junk-

yard computing: repurposing discarded smartphones to minimize carbon. In

Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2023), 400–412.
doi: 10.1145/3575693.3575710.

[27] Swamit Tannu and Prashant J. Nair. 2022. The dirty secret of SSDs: embodied

carbon. In Proceedings of the 1st Workshop on Sustainable Computer Systems
Design and Implementation (HotCarbon 2022).

[28] Haitao Steve Zhu, Chaoren Lin, and Yu David Liu. 2015. A programming model

for sustainable software. In Proceedings of the 37th IEEE/ACM International
Conference on Software Engineering (ICSE 2015), 767–777. doi: 10.1109/ICSE.2
015.89.

[29] Noa Zilberman, Eve M Schooler, Uri Cummings, Rajit Manohar, Dawn Nafus,

Robert Soulé, and Rick Taylor. 2022. Toward Carbon-Aware Networking. In

Proceedings of the 1st Workshop on Sustainable Computer Systems Design and
Implementation (HotCarbon 2022).

https://perspicuous-computing.science
https://doi.org/10.5281/zenodo.8063846
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1145/2384616.2384676
https://doi.org/10.1145/1463891.1463912
https://doi.org/10.1145/1460833.1460871
https://www.fujitsu.com/global/documents/about/environment/Life%20cycle%20analyses%20of%20Fujitsu%20Desktop%20ESPRIMO%20P9010%20June%202021.pdf
https://www.fujitsu.com/global/documents/about/environment/Life%20cycle%20analyses%20of%20Fujitsu%20Desktop%20ESPRIMO%20P9010%20June%202021.pdf
https://www.fujitsu.com/global/documents/about/environment/Life%20cycle%20analyses%20of%20Fujitsu%20Desktop%20ESPRIMO%20P9010%20June%202021.pdf
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://doi.org/10.1145/2909476
https://doi.org/10.23919/ICACT.2019.8701895
https://doi.org/10.1016/j.suscom.2017.10.001
https://spectrum.ieee.org/cloud-computings-coming-energy-crisis
https://spectrum.ieee.org/cloud-computings-coming-energy-crisis
https://doi.org/10.1145/1993498.1993518
http://hdl.handle.net/1721.1/86773
http://hdl.handle.net/1721.1/86773
https://doi.org/10.1145/3575693.3575709
https://doi.org/10.1145/3575693.3575710
https://doi.org/10.1109/ICSE.2015.89
https://doi.org/10.1109/ICSE.2015.89

	Abstract
	1 Introduction
	2 Carbon Metrics
	3 carbond
	3.1 Interfaces
	3.2 Embodied Emissions
	3.3 Operational Emissions

	4 carbond in Use
	5 Conclusion & Outlook
	Acknowledgments

