
EnergAt: Fine-Grained Energy Attribution for Multi-Tenancy
Hongyu Hè∗
ETH Zurich

Michal Friedman
ETH Zurich

Theodoros Rekatsinas
Apple Inc.

ABSTRACT

In the post-Moore’s Law era, relying solely on hardware advance-
ments for automatic performance gains is no longer feasible without
increased energy consumption, due to the end of Dennard scal-
ing. Consequently, computing accounts for an increasing amount
of global energy usage, contradicting the objective of sustainable
computing. The lack of hardware support and the absence of a
standardized, software-centric method for the precise tracing of
energy provenance exacerbates the issue. Aiming to overcome this
challenge, we argue that fine-grained software energy attribution
is attainable, even with limited hardware support. To support our
position, we present a thread-level, NUMA-aware energy attribu-
tion method for CPU and DRAM in multi-tenant environments.
The evaluation of our prototype implementation, EnergAt, demon-
strates the validity, effectiveness, and robustness of our theoretical
model, even in the presence of the noisy-neighbor effect. We envis-
age a sustainable cloud environment and emphasize the importance
of collective efforts to improve software energy efficiency.

CCS CONCEPTS

•Hardware→ Power estimation and optimization; • Software

and its engineering→ Software organization and properties;
• Computer systems organization;

KEYWORDS

software energy attribution, sustainable computing, energy effi-
ciency, multi-tenancy, non-uniform memory access

ACM Reference Format:

Hongyu Hè, Michal Friedman, and Theodoros Rekatsinas. 2023. EnergAt:
Fine-Grained Energy Attribution for Multi-Tenancy. In 2nd Workshop on
Sustainable Computer Systems (HotCarbon ’23), July 9, 2023, Boston, MA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3604930.3605716

1 INTRODUCTION

In the post-Moore era, accelerating application by hardware ad-
vancements typically requires computing systems to burn more
energy. This leads to increasing amounts of global energy consump-
tion [23, 27, 39, 52], which impairs the sustainability of computing
operations. Unlike hardware, software design and optimization of-
ten neglect their impact on energy efficiency and carbon footprints.

∗Corresponding author <hongyu.he@inf.ethz.ch>.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotCarbon ’23, July 9, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0242-6/23/07. . . $15.00
https://doi.org/10.1145/3604930.3605716

This phenomenon is primarily due to challenges in software energy
attribution. Energy attribution of software aims to determine the
share of energy consumed by the target application and its subtasks
(energy provenance), excluding the fraction used by other collocated
applications. Task-level energy attribution in multi-tenant environ-
ments could not only facilitate energy-aware decision-making in
the cloud but also help developers gain first-hand insights into the
energy efficiency and carbon footprint of their applications.

However, such fine-grained attribution is particularly hard due
to the lack of support from both hardware and software. First,
energy-related statistics measured by hardware are typically coarse-
grained (at the device/socket-level) and does not support runtime
or software-level information (fine-grained) for energy attribution.
For instance, the energy consumed by a program running on a CPU
core for a period of time cannot be directly obtained from hard-
ware, since CPU power is measured at the socket level [49]. Second,
the problem of software attribution is exacerbated by the increas-
ing heterogeneity and multi-tenancy in the cloud. For example,
together with CPUs, GPUs, and storage, specialized accelerators
such as TPUs and FPGAs are increasingly shared among many
tenants in the cloud [10, 26, 28, 31, 38, 42, 47]. Moreover, the push
for compute-storage disaggregation [5, 7] complicates the problem
of accurately attributing energy at the application/subtask level fur-
ther. Therefore, hardware support alone cannot effectively solve the
problem of fine-grained energy attribution, and software solutions
are needed.

Gap. In recent years, several tools have been developed to mea-
sure software energy consumption (e.g., [6, 12, 21, 25, 35, 53]). These
tools have primarily focused on usability, accessibility, and the in-
terpretability of their outputs, but they do not aim for fine-grained
energy attribution. Specifically, they either assume that the mea-
sured application is not collocated with other tasks, treating the
total energy consumption of the host machine as that of the target
application, or they use coarse-grained energy attribution models
at the process level [11, 53] and do not consider NUMA effects
in case of multiple CPU sockets (§2). Moreover, these tools do
not update the traced subtasks of the target application reactively,
which is problematic since processes and threads can be created
and deleted at runtime. Furthermore, these tools do not separate
their own energy cost from the measurements of target. We find
that the lack of such accounting in fine-grained, software-centric
attribution methodology [4] leads to more than 46.3% overestima-
tion and 93.3% underestimation (Fig. 1), which could be detrimental
for sustainable runtime operations.

Our position. We argue that developing fine-grained energy
attribution models is feasible even with coarse-grained hardware
support. These models could serve as the foundation for building
sustainable cloud environments. In order to achieve this objective,
precise and validated accounting of software energy provenance is
required in multi-tenant environments. To support our stance with
concrete exposition, we make the following contributions:

https://doi.org/10.1145/3604930.3605716
https://doi.org/10.1145/3604930.3605716

HotCarbon ’23, July 9, 2023, Boston, MA, USA Hongyu Hè, Michal Friedman, and Theodoros Rekatsinas

(1) We propose a thread-level, NUMA-aware method for CPU and
DRAM energy attribution in a multi-tenant environment (§3).

(2) To evaluate our theoretical model, we provide a prototype imple-
mentation (§4) and present preliminary results (§5) that demon-
strate the attribution model’s validity, effectiveness, and robust-
ness to the noisy-neighbor effect in multi-tenant environments.

(3) Building upon the fine-grained tracing of software energy prove-
nance, we envisage a cloud environment in which decentralized,
software-centric energy attribution supports a logically central-
ized runtime control to conduct energy-aware operations and
provide feedback to users about their applications’ energy effi-
ciency (§7). We also present insights into promising opportuni-
ties and prominent challenges thereof.

2 COARSE-GRAINED ENERGY ATTRIBUTION

Coarse hardware support. Commodity hardware mostly sup-
ports coarse-grained power estimation. For instance, as of the Sandy
Bridge generation, Intel processors come with a built-in power me-
ter, the Running Average Power Limit (RAPL) [49]. It provides
an interface to the accumulated energy consumption of various
components, e.g., CPU package and DRAM. Although its energy
reporting is mainly based on kernel events [49], RAPL has been
proven to be sufficiently accurate and can capture millisecond-level
energy events [22, 29, 49]. GPUs also support power reporting, e.g.,
NVIDIA’s NVML [41] and ROCm SMI [2] from AMD. For FPGAs,
Xilinx-AMD provides dedicated tools for power estimation [3]. Un-
fortunately, none of these devices inherently supports fine-grained
energy measurement and attribution. For example, energy mea-
surements from RAPL are reported at the socket level. Similarly,
although fractional sharing of GPU [42] and FPGA [38] is now
possible, their energy reporting is still at the device/user level.

Coarse-grained software energy accounting. Several recent
tools have been developed to measure software energy consump-
tion. Many of them focus on machine learning (ML) workloads,
which are particularly energy-intensive [25, 46, 55]. To name a
few, CodeCarbon [35] reports the energy usage of a program, mea-
suring the consumption of CPU, DRAM, and GPU. It features a
user-friendly API, a UI and exports interpretable results. Carbon-
tracker [6] offers similar measurements and predicts the energy con-
sumption ofML training based on a few epochs. Specifically built for
ML applications, Experiment Impact Tracker (Impact Tracker) [25]
collects energy measurements for both CPU and GPU, and allows
users to generate environmental impact statements for their ex-
periments. Another popular tool is Scaphandre [21] which has
integrated support for power measurements in Kubernetes.

Unfortunately, existing tools only employ coarse-grained energy
attribution models as summarized below. Consider a target applica-
tion A that potentially consists of multiple tasks 𝑎 running on a
set of devices 𝐷 . Then, coarse-grained energy attribution models
can be formulated as:

𝐸𝐷total ← Sample power meter of 𝐷 every 𝑇sample (1)

𝐸𝐷A = 𝐸𝐷total ·
[(∑︁

𝑎∈A 𝑈𝐷
𝑎

) /
𝑈𝐷
total

]
, (2)

where 𝐸𝐷total and 𝐸𝐷A are the total energy consumed by the server
machine and application A on 𝐷 , respectively. Every 𝑇sample time,

the corresponding energy meter of the device is sampled to ob-
tain the accumulated energy for this period. 𝑈𝐷

𝑎 and 𝑈𝐷
total are

the resource usage of the application task 𝑎 and that of all tasks
present on the server machine. We argue that this energy attri-
bution method is insufficient in precisely capturing applications’
power dynamics. Specifically, it neither takes into account NUMA
effects [8, 14, 36, 56] in the presence of multiple sockets nor does
it distinguish threads from processes when tracing energy prove-
nance (§3.1). This method is also prone to the noisy-neighbor ef-
fect [15, 16] in a multi-tenant environment, where the energy at-
tribution of an application is interfered by collocated tasks on the
same host.

3 THREAD-LEVEL AND NUMA-AWARE

ENERGY ATTRIBUTION

Although present-day hardware only provides coarse-grained en-
ergy measurement capabilities, we believe that there is still im-
mense potential to achieve fine-grained energy attribution with a
software-based approach [4]. In this work, we demonstrate fine-
grained energy attribution of CPU and DRAM with coarse-grained
measurements from Intel RAPL meter. CPU and DRAM are primary
consumers of software energy. Even for GPU-dependent ML ap-
plications, they together still account for more than 30% of total
energy use [6, 55].

3.1 Relevant Factors in Energy Attribution

Multiple sockets. Server-class machines generally have ≥ 2
CPU sockets, e.g., for higher memory capacity and fault toler-
ance. Unfortunately, when measuring and attributing energy, prior
work (§2) does not take into account NUMA effects, and the applica-
tion resources are aggregated over all sockets (Eq. 2). This approach
can be problematic for accurate attribution due to the potential
imbalance of resource allocation in NUMA architectures [8]. For
example, a dual-socket machine has only one user task running,
whose CPU times are 30 s and 180 s on each of the two sock-
ets. If the total CPU times and the measured energy consumption
of the two sockets are (100 s, 30 J) and (200 s, 50 J) respectively,
then the CPU energy consumption attributed to the task should be
(30/100 × 30 + 180/200 × 50) J, instead of [(30+180)/(100+200) ×
(30 + 50)] J. Note that, apart from CPU time, another crucial factor
making a difference here is CPU utilization. Specifically, utilization
typically varies among sockets at a certain point in time, and power
scales non-linearly with it [19, 50, 51]. Consequently, the same
amount of CPU time would result in different power dynamics at
different utilization levels. Therefore, relying solely on CPU time
as an aggregated proxy is insufficient for estimating energy con-
sumption across multiple sockets. The same principle also applies
when accounting for memory’s energy consumption. In practice,
however, energy variability caused by NUMA memory allocation
plays a less significant role, compared to CPU.

Threads vs. processes. High parallelism is prevalent in modern
applications. Apart from traditional high-performance computing
workloads, large numbers of parallel tasks in ML pipelines (e.g.,
feature stores [20, 43, 54]) can amount to 1/3𝑟𝑑 of the total energy
consumption, exceeding the amount of energy used by model train-
ing of large-scale jobs [55]. Moreover, threads are frequently used
in these applications as they provide additional concurrency in

EnergAt: Fine-Grained Energy Attribution for Multi-Tenancy HotCarbon ’23, July 9, 2023, Boston, MA, USA

virtualized environments [32] and help circument some limitations
in programming languages (e.g., GIL in Python). To precisely at-
tribute CPU energy for a parallel application, one needs to obtain
the CPU time for each of its tasks (processes and kernel threads) per
socket. For example, a parallel application spawns several threads
and processes, each of which could have different runtime statis-
tics on different sockets, depending on the placement decisions
made by the scheduler. Furthermore, when querying resource sta-
tistics, tools such as ps and top either (1) use the total resource
usage of the process group (PG)1 as that of a single task therein
(process/thread), or (2) separate the statistics for each task, given
different flags. Unfortunately, existing libraries do not always han-
dle the two cases properly. For example, many energy tools rely
on the library psutil [48], which reports total resource usage of
the PG when asked for that of a thread (case (2)). In turn, when
tracing energy provenance at the process level, case (1) can result
in imprecise measurements (since the resource usages of threads
and processes cannot be distinguished for individual accounting),
and case (2) can lead to underestimation (as only the resource usage
of processes is accounted and that of threads is ignored). Thus,
the fact that 𝑎 in Eq. 2 purely represents processes and ingores
threads is problematic for fine-grained attribution. Note that, for
resources shared between the parent process and its threads (e.g.,
stack memory), making such a distinction is unnecessary. However,
energy tracking tools themselves should not be created as threads
of the application it measures. Otherwise, the resources used by
the energy tool would entangle with its target application, which
is also a pitfall in existing methods.

Noisy-neighbor effects. Nowadays, applications are typically
deployed in the cloud, where they are colocated with other tasks,
sharing resources on the same host. Multi-tenancy creates “noisy-
neighbor” effects [15, 16], by which the performance of an ap-
plication is interfered by its “neighbors”. In the presence of such
interference, only the energy consumed by the target application
should be accounted.

3.2 Fine-Grained Attribution Model

Taking into account the aforementioned factors (§3.1), we propose
a thread-level energy attribution model that is NUMA-aware and
robust to the noisy-neighbor effect.

Static power. The first step in our model is to measure the static
power of the host on which the target application runs. The static
power is assumed to be independent of the load and should not
be confused with the idle power, which is consumed by the server
machine in various sleep states [1, 23, 24]. This value can either be
obtained from the manufacturer’s datasheet or more practically, via
a sampling procedure. For each socket 𝑠 ∈ 𝑆 and a sampling period
𝑇static, the average static power (𝑃static)𝑠 is given by:(

𝑃𝐷static

)𝑠
= (Sample energy value of 𝐷 for 𝑇static) /𝑇static . (3)

Then, at runtime, the total energy used by the host
(
𝐸𝐷total

)𝑠
can be

obtained using Eq. 1 for each 𝑠 , and the static energy consumption

1Resource group created by the parent process.

(
𝐸𝐷static

)𝑠
can be obtained periodically:(

𝐸𝐷static

)𝑠
=

(
𝑃𝐷static

)𝑠
·𝑇sample . (4)

Attributing CPU energy with thread-level metrics. To at-
tribute CPU energy, we first obtain the power offset

(
𝐸CPUΔ

)𝑠
by

subtracting the static power from the total:(
𝐸CPUΔ

)𝑠
=

(
𝐸CPUtotal

)𝑠
−

(
𝐸CPUstatic

)𝑠
. (5)

Having obtained the host-wide energy statistics, we now quantify
the resource usage of A in thread granularity. Specifically, we
estimate the CPU residence rate for every process and thread 𝑎 ∈ A
on each socket 𝑠 , i.e., the fraction of time task 𝑎 was scheduled on 𝑠 :

PCPU (𝑠 | 𝑎) ≈
(∫ 𝑡 ′+𝑇sample

𝑡=𝑡 ′
1{𝑎 on 𝑠 }𝑑𝑡

) /
𝑇sample, (6)

where𝑑𝑡 in practice is the discretized time steps for sampling kernel
scheduling decisions. With Eq. 6, we approximate the CPU time of
A on 𝑠 with an expectation conditioned on the kernel scheduling
decisions:(

𝑇CPU
A

)𝑠
= E

[
𝑇CPU
A | 𝑠

]
≈

∑︁
𝑎∈A
PCPU (𝑠 | 𝑎) ·𝑇CPU

𝑎 , (7)

where 𝑇CPU
𝑎 is the total CPU time of 𝑎 on all 𝑠 ∈ 𝑆 .

Furthermore, to combat the noisy-neighbor effect, we propose
the concept of energy credit denoted 𝐶𝐷

A , that is, how much a frac-
tion of the energy consumption of 𝐷 should be attributed to A.
Specifically, we employ the proportion of A’s CPU time over that
of all tasks on the server as a proxy for the CPU energy credit on 𝑠 :

(𝑇total)𝑠 ← Total CPU time (kernel + user) of 𝑠 (8)(
𝐶CPU
A

)𝑠
=

[(
𝑇CPU
A

)𝑠 / (
𝑇CPU
total

)𝑠]𝛾
, (9)

where (𝑇total)𝑠 is the server-wide CPU time per socket and 0 ≥
𝛾 ≤ 1 is a scaling factor that takes into account machine-specific
non-linearity, since the energy consumption of CPU does not scale
linearly with the utilization [19, 50, 51]. Specifically, the trend flat-
tens gradually as utilization gets higher. Using the CPU energy
credit, we compute the energy consumption of A by aggregating
values from all sockets:

𝐸CPUA =
∑︁
𝑠∈𝑆

(
𝐸CPUΔ

)𝑠
·
(
𝐶CPU
A

)𝑠
+

(
𝐸CPUstatic

)𝑠
. (10)

Attributing DRAM energy with NUMA memory statistics.
The energy attribution for DRAM is similar, except that we no
longer consider threads individually, since they share memory un-
der the same PG. However, the imbalance in memory allocation of
NUMA architectures still needs to be dealt with care. Firstly, we
obtain the server-wide memory usage per socket (𝑀total)𝑠 and the
memory offset

(
𝐸DRAMΔ

)𝑠
:

(𝑀total)𝑠 ← Total available NUMA memory on 𝑠 (11)(
𝐸DRAMΔ

)𝑠
=

(
𝐸DRAMtotal

)𝑠
−

(
𝐸DRAMstatic

)𝑠
. (12)

HotCarbon ’23, July 9, 2023, Boston, MA, USA Hongyu Hè, Michal Friedman, and Theodoros Rekatsinas

Next, we measurememory residence rate for each process 𝑎 ∈ A, i.e.,
the fraction of private NUMA memories allocated on 𝑠 , excluding
shared memories (whose ownership is hard to reason about):

PDRAM (𝑠 | 𝑎) ≈ E
[{(

𝑀Δ𝑡
𝑎

)𝑠 / (
𝑀Δ𝑡
total

)𝑠 }𝑇sample
]
, (13)

where {} encloses a collection of memory samples on 𝑠 over a
sampling period 𝑇sample with discretized steps Δ𝑡 . Then, the total
NUMA memory of A on 𝑠 can be approximated by:

(𝑀A)𝑠 = E [𝑀A | 𝑠] ≈
∑︁
𝑎∈A
PDRAM (𝑠 | 𝑎) · (𝑀𝑎)𝑠 . (14)

Now, we represent the memory energy credit of A on 𝑠 as the
fraction of private memory of A:(

𝐶DRAM
A

)𝑠
=

[
(𝑀A)𝑠

/
(𝑀total)𝑠

]𝜎
, (15)

where, similar to 𝛾 in Eq. 9, 𝜎 is the machine-specific scaling factor.
With the formulated memory credit in Eq. 15, the DRAM energy
attribution of A can be computed by:

𝐸DRAMA =
∑︁
𝑠∈𝑆

(
𝐸DRAMΔ

)𝑠
·
(
𝐶DRAM
A

)𝑠
+

(
𝐸DRAMstatic

)𝑠
. (16)

4 ENERGAT: PROTOTYPE IMPLEMENTATION

To evaluate our theoretical model, we develop and open source2 a
prototype implementation of our attribution model, named Ener-
gAt.

Firstly, to cleanly distinguish the energy consumption of the
tool and the user program (§2), we implement EnergAt as a sep-
arate process of the target application. Once it obtains the static
power information, its main process creates a daemon thread that
samples the RAPL meter and relevant thread-level NUMA events
every 𝑇sample time (Eq. 1). Table 1 lists the sampled counters and
their corresponding metrics used by the attribution model. Apart
from the maximum domain values and the clock speed that are
obtained once at the beginning, all other counters are sampled at
this frequency. This sampling period currently is set to 10 ms and
can be adjusted based on the type of application it targets. Note
that, even the smallest sampling interval supported by RAPL (1 ms)
is larger than the minimum scheduling granularity of the Linux
kernel. Nevertheless, EnergAt only aims for an approximation of
the conditional probabilities (Eq. 6 and 13) with low measurement
overheads. Given our evaluation results (§5), the 10 ms interval
appears empirically sufficient for precise energy attribution.

Based on the statistics collected by the daemon thread, the parent
process of EnergAt computes the thread-level resource usages(
𝑇CPU
A

)𝑠
and (𝑀A)𝑠 aggregated by sockets (Eq. 7 and 14) . It then

calculates the CPU and memory energy credits by Eq. 9 and 15.
Finally, EnergAt attributes energy based on the energy credits
(Eq. 10 and 16) and stores energy traces in its database, which could
be queried later.

5 ATTRIBUTION MODEL EVALUATION

This section presents preliminary evaluation results of our energy
attribution model (§3) implemented in EnergAt. We employ the
Linux benchmarking tool stress-ng [18, 30] to create four types
2https://github.com/HongyuHe/energat

Counters Metrics

Intel RAPL package and DRAM domains Accumulated energy consumption of CPU packages
and DRAM (through the sysfs interface)

Intel RAPL maximum counter values Maximum ranges of each domain for detecting
and mitigating counters overflow

Memory statistics from the numactl package Total, used, and private memory statistics for processes
and the operating system on a per-NUMA-node basis

/proc/*/task/*/stat User and kernel times for each task and its children
CLK_TCK value Number of clock ticks per second of the testbed

Table 1: Descriptions of metrics from sampled counters.

Workload Description

cpu
Sweeping CPU utilization from 0 to 100% with equal
numbers of processes and threads loaded with matrix operations

mem
Sweeping memory usage from 0 to 100% with
one process continuously calling mmap/unmap

mix
Maintaing both the CPU and memory utilization at 50%
using the same methods as that of cpu and mem

mix (w/ neighbor)
Lauching two mix workloads, treating one as the target application
and another as the “noisy neighbor” collocated on the same host

Table 2: Descriptions of employed microbenchmarks.

of workloads (Table 2). The aim of these microbenchmarks is to (1)
cover different utilization levels of the two devices and (2) emulate
the noisy-neighbor effect. The testbed we use in the following
experiments is a dual-socket server, where each NUMA node has 8
Intel Xeon E5-2630 CPUs (16 logical cores) and 32 GiB of DRAM.
We run each workload for one hour, averaging results over five
runs.

Model validation. We start by validating the total energy con-
sumed by the host server measured by EnergAt. To this end, we
make a popular Firefox plugin [40] run independently for reference.
As shown in Fig. 1, the total energy consumption measured by
EnergAt closely matches that of the Firefox plugin.

Next, we validate our fine-grained energy attribution model.
Since direct validation is infeasible [53], we conduct validation by
summation [53]. In Fig. 2, we trace the energy provenance of all jobs
present on the host, including the corresponding microbenchmarks,
shown in light gray, and sum their attributed energies together
(light gray bars) to compare with the total energy value of the ma-
chine (white and dark gray bars). In other words, the attribution
model is indirectly validated if the energy attribution of all the
jobs, plus the energy used by EnergAt (black bars), amounts to the
same value as that of the total energy consumed by the host server.
The resulting summation of attributed energies from all collocated
tasks closely matches the total values on all three workloads (Ta-
ble 2) with an average error margin of 4.52%. We anticipated a bit
higher error for the mem workload, as EnergAt currently only con-
siders private memories in attribution and disregards any shared
memories (Eq. 13), which we defer to future work.

Robustness to noisy-neighbor effect. Now, we evaluate the
robustness and the effectiveness of the energy crediting method
(Eq. 9 and 15) in the presence of the noisy-neighbor effect. To this
end, we employ the mix (w/ neighbor)microbenchmark (Table 2).
Although energy consumption will be slightly different between
runs even on the same machine with the same workload, we expect
that the total energy attributed to the same workload should be
approximately the same, regardless of whether it runs in an isolated

https://github.com/HongyuHe/energat

EnergAt: Fine-Grained Energy Attribution for Multi-Tenancy HotCarbon ’23, July 9, 2023, Boston, MA, USA

0 50 100 150
Energy [Wh]

cpu

mem

mix

mix
(w/ neighbor)

M
ic

ro
be

nc
hm

ar
ks

 119

 60

 113

 119

 119

 60

 113

 119

 111

 45

 105

 104

 115

 27

 103

 88

 136

 66

 125

 132

 174

 67

 157

 169

 8

 17

 61

 57

Reference (total)
EnergyAt (total)

Attributed
energy

EnergyAt
Impact Tracker
CodeCarbon
Carbontracker
Scaphandre

Figure 1: Drastically different results from various tools on

four microbenchmarks (Table 2). The bars below the (total)
values are the attributed energies to the corresponding bench-

mark tasks by different tools. We highlight three observa-

tions: (1) existing methods can exhibit more than 46.3% over-

estimation and 93.3% underestimation of the attributed en-

ergy compared to the total values, (2) the total energy con-

sumption measured by our fine-grained energy attribution

model EnergAt matches that of the reference value, and

(3) the dotted line illustrates that EnergAt is robust to the

noisy-neighbor effect.

environment or co-locate with a neighboring task. When the neigh-
bor task starts, the total energy consumption of the server increases
due to higher resource usage, and the energy credit assigned to
the target also drops, since the relative fraction of resources used
by the target application reduces (Fig. 3 left). This reactive change
in energy credit assignment assures that the energy attributed to
the target by EnergAt remains almost unaffected (Fig. 3 right and
Fig. 1), while the measurements from other attribution tools change
substantially due to the noisy-neighbor effect.

Lowattribution overhead. We aim for not only a precise energy
attribution method but also a low-overhead one for practical usage.
Thus, unlike existing methods, we explicitly separate the energy
used by EnergAt from the traced application and its subtasks (§4).
When tracing the energy provenance of a single application (Fig. 1),
the energy overhead of EnergAt is 6.5% on average. The energy
cost is 8.9% on average when tracing all jobs on the server (Fig. 2).

6 LIMITATIONS

Although our proposed method demonstrates promising results,
several limitations are crucial to be addressed in future work. First,
the power modeling (Eg. 10 and 16) does not take into account
other relavent factors, such as various I/O and caches [53]. Also,
it only considers private memories, which results in lower energy
attribution on the mem microbenchmark (Fig. 2). This shortcoming
is in part due to the restricted hardware interface and the overhead
of sampling corresponding counters at a fine-grained level. For in-
stance, unlike well-integrated RAPL interfaces, accounting disk and
network I/O requires external power meters. Similarly, obtaining
both per-thread and per-socket cache events is non-trivial. Addi-
tionally, setting machine-specific model parameters (𝛾, 𝛿) currently
needs hand-tuning for a certain platform. Second, the energy cost

cpu mem mix
0

25

50

75

100

125

E
ne

rg
y

[W
h]

 119.95

 59.73

 112.73 119.90

 58.98

 112.68 120.03

 50.55

 110.25 119.95

 59.73

 112.73 119.90

 58.98

 112.68

 9.49
 6.37 8.66

 119.95

 59.73

 112.73 119.90

 58.98

 112.68 120.03

 50.55

 110.25 119.95

 59.73

 112.73 119.90

 58.98

 112.68

 9.49
 6.37 8.66

cpu
task
+ all
other
jobs

mem
task
+ all
other
jobs

mix
task
+ all
other
jobs

Reference (total)
EnergyAt (total)
EnergyAt (overhead)
EnergyAt (attributed)

Figure 2: Validation by summation for our fine-grained en-

ergy attribution model. The model is indirectly validated if

the light gray part plus the black portion is equal to the total

value (white or dark gray bars).

0 1000 2000 3000
Time [s]

0.0

0.2

0.4

0.6

0.8

C
PU

 E
ne

rg
y

C
re

di
t

neighbor task
starts

neighbor task
ends

0 1000 2000 3000
Time [s]

0

10

20

30

40

C
PU

 E
ne

rg
y

A
tt

ri
bu

tio
n

[J
]

attributed energy
mostly unaffectedmix

mix (w/ neighbor)

Figure 3: Change of energy credit (𝐶CPU

A , Eq. 9) assigned to the

target application (left), reacting to the launch of a “neighbor

task” running the sameworkload as the target application on

the same host, while the actual amount of energy attributed

to the target remains mostly unaffected (right).

of the prototype is non-negligible, which can be partially ascribed
to the inefficiency of reading various counters. Moreover, although
EnergAt automatically pins its process and daemon thread to
the least-loaded core, it could still impose a higher performance
penalty, compared to the coarse-grained tools. While being an in-
herent tradeoff between granularity and cost, this drawback could
be mitigated through a more optimized implementation of the pro-
posed attribution model. For example, the importance of various
counter values differs by specific use cases [11], and in turn, they
should be sampled at different granularity to reduce the overhead.
Lastly, validating fine-grained energy attribution model remains
to be a prominent challenge. Validation by summation [53] (§5)
is rather limited in that it cannot provide insight into the energy
attribution of each traced entity. Since fine-grained validation is
virtually impossible in a real system, full-system simulation (e.g.,
gem5 [37]) could be of help for this purpose.

7 CHALLENGES AND OPPORTUNITIES

We lay out a vision of sustainable cloud environments (Fig. 4) where
EnergAt can help both the users and cloud providers incorporate
energy into their operation and development cycles.

HotCarbon ’23, July 9, 2023, Boston, MA, USA Hongyu Hè, Michal Friedman, and Theodoros Rekatsinas

 Power Manager

precise energy credits

O
bj

ec
tiv

e

Energy

v1

v2

analyze

 Disaggregated Compute

Energy
Provenance GraphML Energy Models

 Server

train

 Server

 Sandbox

User Program

powerd Sandbox

User Program

EnergAt
(daemon)

FPGAFPGANPUNPUGPUGPUCPUCPU

 Disaggregated StorageEnergAt
(agent)

CPUCPUDRAM CPUDiskNVM

EnergAt
(agent)

Users

energy-aware
resource scheduling

energy-based billing

CPU
(local)

CPU
(local)

DRAM
(local)
DRAM
(local)

deploy

feedback

improve

Figure 4: Depiction of a sustainable cloud environmentwhere

both developers and providers make informed decisions

based on distributed, fine-grained energy attribution.

In a sustainable cloud environment, service providers can inject
EnergAt into user sandboxes (e.g., as a side-car container), upon
application deployment (1). The tool runs alongside the user pro-
gram as a daemon, monitoring the power dynamic by collecting
performance counters and energy readings from the local machine
and from remote agents located on disaggregated compute and/or
storage nodes (2). Then, EnergAt attributes energy to the user
application and reports corresponding energy credits to the Power
Manager of the cluster, informing the application owner of the
energy consumption (3). The precise energy credits can be used
to construct provenance graphs [34, 44, 45] (4) for tracing the
power relationships among deployed applications. Such graph rep-
resentations can be leveraged to train high-quality ML models that
facilitate power management. Furthermore, users can analyze and
improve their software energy efficiency based on the detailed
feedback (5). Similarly, cloud providers can make energy-aware
decisions accordingly (5), e.g., energy-based billing and workload
migration for mitigating hot spots. That said, there are as many
promising opportunities as there are challenges in this virtuous
cycle.

New interfaces for secure and efficient energy reporting. The
lack of secure and efficient interfaces between hardware and soft-
ware severely inhibits energy measurement (2). For instance, read-
ing RAPL requires manual timestamp alignment [22] and privileged
permission for security [13]. Moreover, virtualization is a similar
challenge as energy-related counters are generally not propagated
to the virtualized applications. Consequently, most of the energy
models for virtualized environments are predictive and treat user
programs as black boxes [9, 17, 18, 33]. Thus, tracing fine-grained
energy provenance amid layers of virtualization is way more com-
plex and remains an open question.

Energy attribution for new cloud computing services. Multi-
tenancy and heterogeneity in the cloud are being taken to the
extreme in order to remain profitable in the post-Moore’s Law

era. For example, various hardware accelerators are increasingly
shared among large numbers of tenants. They have fundamentally
different inner workings compared to Von Neumann architectures.
Furthermore, high-level cloud services (e.g., DBaaS, MLaaS, and
FaaS) have emerged and are popularized. Their abstractions are
farther away from hardware and highly distributed in nature. These
factors not only pose challenges to collecting energy statistics (2)
but also to tracing precise energy provenance (3 , 4).

NUMA-aware energy optimization. Although this work shows
the importance of carefully attributing energy for applications
running on multiple sockets, how developers and cloud providers
can leverage the proposed the model (5) remains unexplored. For
instance, is the energy consumption of an application the same
whether it runs on a different core of the same socket or on a dif-
ferent socket within the same server? The answer to this question
would be useful for both users and cloud providers in terms of
improving energy efficiency. This question, however, is also chal-
lenging as there are temperature effects that impact the actual
power usage.

Improving software performance with energy in mind. With
the availability of new abstractions and tools, developers can gain
insights into the energy dynamics of their applications (3). In turn,
development decisions should not only focus on traditional perfor-
mance optimization but also consider energy efficiency (5). For
instance, a 10% increase in throughput may not be considered ben-
eficial if it comes at the cost of a 50% higher power consumption.
Similarly, in the context of training ML models, energy should be
taken into account as an early-stopping criterion, since a mere
0.1% loss reduction may not justify the addition of 100 kWh of
energy consumption. Last but not least, it is worth revisiting the en-
ergy efficiency of traditional algorithms and data structures whose
optimization has primarily focused on performance.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their many helpful com-
ments. We especially would like to thank Shail Dave for his invalu-
able assistance throughout the revision process. Shail’s extensive
feedback on each section and meticulous attention to detail, includ-
ing the revision of every figure, played a vital role in enhancing the
quality of the final paper.

REFERENCES

[1] 2017. package c-states | 12th generation intel® coreTM processors datasheet.
https://edc.intel.com/content/www/us/en/design/ipla/software-development-
platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-
processors-datasheet-volume-1-of-2/001/package-c-states/

[2] AMD. 2023. ROCm System Management Interface Support Guide
v5.3. https://docs.amd.com/bundle/ROCm-System-Management-Interface-
Support-Guide-v5.3

[3] Xilinx AMD. 2023. Xilinx Power Estimator (XPE). https://www.xilinx.com/
products/technology/power/xpe.html.

[4] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene
Zhang. 2022. Treehouse: A case for carbon-aware datacenter software. arXiv
preprint arXiv:2201.02120 (2022).

[5] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Disaggregation and
the application. In Proceedings of the 12th USENIX Conference on Hot Topics in
Cloud Computing. 15–15.

[6] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Car-
bontracker: Tracking and Predicting the Carbon Footprint of Training Deep
Learning Models. CoRR abs/2007.03051 (2020). arXiv:2007.03051 https://arxiv.
org/abs/2007.03051

https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/001/package-c-states/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/001/package-c-states/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/001/package-c-states/
https://docs.amd.com/bundle/ROCm-System-Management-Interface-Support-Guide-v5.3
https://docs.amd.com/bundle/ROCm-System-Management-Interface-Support-Guide-v5.3
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2007.03051

EnergAt: Fine-Grained Energy Attribution for Multi-Tenancy HotCarbon ’23, July 9, 2023, Boston, MA, USA

[7] Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. 2020. Hailstorm:
Disaggregated compute and storage for distributed lsm-based databases. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 301–316.

[8] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fe-
dorova. 2011. A Case for NUMA-aware Contention Management on Multi-
core Systems. In 2011 USENIX Annual Technical Conference, Portland, OR, USA,
June 15-17, 2011, Jason Nieh and Carl A. Waldspurger (Eds.). USENIX Asso-
ciation. https://www.usenix.org/conference/usenixatc11/case-numa-aware-
contention-management-multicore-systems

[9] Ata E Husain Bohra and Vipin Chaudhary. 2010. VMeter: Power modelling for
virtualized clouds. In 2010 ieee international symposium on parallel & distributed
processing, workshops and phd forum (ipdpsw). Ieee, 1–8.

[10] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-
ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Com-
puter Society, 7:1–7:13. https://doi.org/10.1109/MICRO.2016.7783710

[11] Maxime Colmant, Mascha Kurpicz, Pascal Felber, Loïc Huertas, Romain Rouvoy,
and Anita Sobe. 2015. Process-level power estimation in vm-based systems. In
Proceedings of the Tenth European Conference on Computer Systems. 1–14.

[12] Stefano Corda, Bram Veenboer, and Emma Tolley. 2022. PMT: Power Measure-
ment Toolkit. CoRR abs/2210.03724 (2022). https://doi.org/10.48550/arXiv.2210.
03724 arXiv:2210.03724

[13] CVE. 2020. CVE-2020-8694. https://www.cve.org/CVERecord?id=CVE-2020-
8694.

[14] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traffic man-
agement: a holistic approach to memory placement on NUMA systems. ACM
SIGPLAN Notices 48, 4 (2013), 381–394.

[15] Christina Delimitrou and Christos Kozyrakis. 2013. iBench: Quantifying in-
terference for datacenter applications. In Proceedings of the IEEE International
Symposium on Workload Characterization, IISWC 2013, Portland, OR, USA, Septem-
ber 22-24, 2013. IEEE Computer Society, 23–33. https://doi.org/10.1109/IISWC.
2013.6704667

[16] Christina Delimitrou and Christos Kozyrakis. 2017. Bolt: I Know What You Did
Last Summer... In The Cloud. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, Yunji Chen, Olivier Temam,
and John Carter (Eds.). ACM, 599–613. https://doi.org/10.1145/3037697.3037703

[17] Gaurav Dhiman, Kresimir Mihic, and Tajana Rosing. 2010. A system for online
power prediction in virtualized environments using gaussian mixture models. In
Proceedings of the 47th Design Automation Conference. 807–812.

[18] Guillaume Fieni, Romain Rouvoy, and Lionel Seinturier. 2020. Smartwatts: Self-
calibrating software-defined power meter for containers. In 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID).
IEEE, 479–488.

[19] Alexander Gilgur, Brian Coutinho, Iyswarya Narayanan, and Parth Malani. 2021.
Transitive Power Modeling for Improving Resource Efficiency in a Hyperscale
Datacenter. In Companion of The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie
Tang, and Leila Zia (Eds.). ACM / IW3C2, 182–191. https://doi.org/10.1145/
3442442.3452057

[20] GitHub. [n. d.]. Ralf: A feature store for rapidly changing data. https://www.uber.
com/en-CH/blog/michelangelo-machine-learning-platform/. https://github.
com/feature-store/ralf

[21] Github. 2023. Scaphandre. https://github.com/hubblo-org/scaphandre.
[22] Marcus Hähnel, Björn Döbel, Marcus Völp, and HermannHärtig. 2012. Measuring

energy consumption for short code paths using RAPL. SIGMETRICS Perform.
Evaluation Rev. 40, 3 (2012), 13–17. https://doi.org/10.1145/2425248.2425252

[23] Hongyu He. 2021. How Can Datacenters Join the Smart Grid to Address the
Climate Crisis? Using simulation to explore power and cost effects of direct
participation in the energy market. CoRR abs/2108.01776 (2021). arXiv:2108.01776
https://arxiv.org/abs/2108.01776

[24] Franz Christian Heinrich, Tom Cornebize, Augustin Degomme, Arnaud Legrand,
Alexandra Carpen-Amarie, Sascha Hunold, Anne-Cécile Orgerie, and Martin
Quinson. 2017. Predicting the Energy-Consumption of MPI Applications at
Scale Using Only a Single Node. 2017 IEEE International Conference on Cluster
Computing (CLUSTER) (2017), 92–102.

[25] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and
Joelle Pineau. 2020. Towards the Systematic Reporting of the Energy and Carbon
Footprints of Machine Learning. CoRR abs/2002.05651 (2020). arXiv:2002.05651
https://arxiv.org/abs/2002.05651

[26] John L Hennessy and David A Patterson. 2019. A new golden age for computer
architecture. Commun. ACM 62, 2 (2019), 48–60.

[27] Nicola Jones et al. 2018. How to stop data centres from gobbling up the world’s
electricity. Nature 561, 7722 (2018), 163–166.

[28] Norman P Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, et al. 2023.
Tpu v4: An optically reconfigurable supercomputer for machine learning with
hardware support for embeddings. arXiv preprint arXiv:2304.01433 (2023).

[29] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and
Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL for Power
Measurements. ACM Trans. Model. Perform. Evaluation Comput. Syst. 3, 2 (2018),
9:1–9:26. https://doi.org/10.1145/3177754

[30] Colin Ian King. 2017. Stress-ng. URL: http://kernel. ubuntu. com/git/cking/stressng.
git/(visited on 28/03/2018) (2017), 39.

[31] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions
make sense on FPGAs?. In 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Associ-
ation, 991–1010. https://www.usenix.org/conference/osdi20/presentation/roscoe

[32] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-
lane: Accelerating Function-as-a-ServiceWorkflows.. In USENIX Annual Technical
Conference. 805–820.

[33] Bhavani Krishnan, Hrishikesh Amur, Ada Gavrilovska, and Karsten Schwan. 2011.
VM power metering: feasibility and challenges. ACM SIGMETRICS Performance
Evaluation Review 38, 3 (2011), 56–60.

[34] Benno Kruit, Hongyu He, and Jacopo Urbani. 2020. Tab2know: Building a knowl-
edge base from tables in scientific papers. In The Semantic Web–ISWC 2020:
19th International Semantic Web Conference, Athens, Greece, November 2–6, 2020,
Proceedings, Part I 19. Springer, 349–365.

[35] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dan-
dres. 2019. Quantifying the Carbon Emissions of Machine Learning. CoRR
abs/1910.09700 (2019). arXiv:1910.09700 http://arxiv.org/abs/1910.09700

[36] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and
memory placement on {NUMA} systems: Asymmetrymatters. In 2015 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 15). 277–289.

[37] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020).

[38] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A Hypervisor for
Shared-Memory FPGA Platforms. In ASPLOS ’20: Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne, Switzerland, March 16-
20, 2020, James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 827–844.
https://doi.org/10.1145/3373376.3378482

[39] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey.
2020. Recalibrating global data center energy-use estimates. Science 367, 6481
(2020), 984–986.

[40] Mozilla. 2023. RAPL command-line utility in the Mozilla tree. https://firefox-
source-docs.mozilla.org/performance/tools_power_rapl.html.

[41] NVIDIA. 2023. NVIDIA Management Library (NVML). https://developer.nvidia.
com/nvidia-management-library-nvml

[42] NVIDIA. 2023. Unlock Next Level Performance with Virtual GPUs. https://www.
nvidia.com/en-us/data-center/virtual-solutions/.

[43] Laurel J. Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan Leszczynski.
2021. ManagingML Pipelines: Feature Stores and the ComingWave of Embedding
Ecosystems. Proc. VLDB Endow. 14, 12 (2021), 3178–3181. https://doi.org/10.
14778/3476311.3476402

[44] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical whole-system provenance capture.
In Proceedings of the 2017 Symposium on Cloud Computing. 405–418.

[45] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant,
David Eyers, Jean Bacon, and Margo Seltzer. 2018. Runtime analysis of whole-
system provenance. In Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. 1601–1616.

[46] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. 2021. Carbon
Emissions and Large Neural Network Training. CoRR abs/2104.10350 (2021).
arXiv:2104.10350 https://arxiv.org/abs/2104.10350

[47] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat T. Chakradhar.
2011. Supporting GPU sharing in cloud environments with a transparent runtime
consolidation framework. In Proceedings of the 20th ACM International Symposium
on High Performance Distributed Computing, HPDC 2011, San Jose, CA, USA,
June 8-11, 2011, Arthur B. Maccabe and Douglas Thain (Eds.). ACM, 217–228.
https://doi.org/10.1145/1996130.1996160

[48] Giampaolo Rodola. 2023-04-16. psutil documentation. https://psutil.readthedocs.
io/en/latest/.

[49] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann,
and Doron Rajwan. 2012. Power-Management Architecture of the Intel Mi-
croarchitecture Code-Named Sandy Bridge. IEEE Micro 32, 2 (2012), 20–27.
https://doi.org/10.1109/MM.2012.12

https://www.usenix.org/conference/usenixatc11/case-numa-aware-contention-management-multicore-systems
https://www.usenix.org/conference/usenixatc11/case-numa-aware-contention-management-multicore-systems
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.48550/arXiv.2210.03724
https://doi.org/10.48550/arXiv.2210.03724
https://arxiv.org/abs/2210.03724
https://www.cve.org/CVERecord?id=CVE-2020-8694
https://www.cve.org/CVERecord?id=CVE-2020-8694
https://doi.org/10.1109/IISWC.2013.6704667
https://doi.org/10.1109/IISWC.2013.6704667
https://doi.org/10.1145/3037697.3037703
https://doi.org/10.1145/3442442.3452057
https://doi.org/10.1145/3442442.3452057
https://www.uber.com/en-CH/blog/michelangelo-machine-learning-platform/
https://www.uber.com/en-CH/blog/michelangelo-machine-learning-platform/
https://github.com/feature-store/ralf
https://github.com/feature-store/ralf
https://github.com/hubblo-org/scaphandre
https://doi.org/10.1145/2425248.2425252
https://arxiv.org/abs/2108.01776
https://arxiv.org/abs/2108.01776
https://arxiv.org/abs/2002.05651
https://arxiv.org/abs/2002.05651
https://doi.org/10.1145/3177754
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700
https://doi.org/10.1145/3373376.3378482
https://firefox-source-docs.mozilla.org/performance/tools_power_rapl.html
https://firefox-source-docs.mozilla.org/performance/tools_power_rapl.html
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://doi.org/10.14778/3476311.3476402
https://doi.org/10.14778/3476311.3476402
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://doi.org/10.1145/1996130.1996160
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://doi.org/10.1109/MM.2012.12

HotCarbon ’23, July 9, 2023, Boston, MA, USA Hongyu Hè, Michal Friedman, and Theodoros Rekatsinas

[50] Rathijit Sen and David A. Wood. 2017. Energy-Proportional Computing: A New
Definition. Computer 50, 8 (2017), 26–33. https://doi.org/10.1109/MC.2017.
3001248

[51] Rathijit Sen and David A. Wood. 2017. Pareto Governors for Energy-Optimal
Computing. ACM Trans. Archit. Code Optim. 14, 1 (2017), 6:1–6:25. https:
//doi.org/10.1145/3046682

[52] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and William
Lintner. 2016. United states data center energy usage report. . (2016).

[53] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan
Chen. 2013. Power containers: an OS facility for fine-grained power and energy
management on multicore servers. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20,
2013, Vivek Sarkar and Rastislav Bodík (Eds.). ACM, 65–76. https://doi.org/10.
1145/2451116.2451124

[54] Uber. 2023. Meet Michelangelo: Uber’s Machine Learning Platform. https:
//www.uber.com/en-CH/blog/michelangelo-machine-learning-platform/.

[55] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, Fiona Aga Behram, Jinshi Huang, Charles Bai,
Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore
Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra
Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, and Kim M.
Hazelwood. 2022. Sustainable AI: Environmental Implications, Challenges and
Opportunities. In Proceedings of Machine Learning and Systems 2022, MLSys 2022,
Santa Clara, CA, USA, August 29 - September 1, 2022, Diana Marculescu, Yuejie
Chi, and Carole-Jean Wu (Eds.). mlsys.org. https://proceedings.mlsys.org/paper/
2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html

[56] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU performance isolation for shared compute clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems. 379–391.

https://doi.org/10.1109/MC.2017.3001248
https://doi.org/10.1109/MC.2017.3001248
https://doi.org/10.1145/3046682
https://doi.org/10.1145/3046682
https://doi.org/10.1145/2451116.2451124
https://doi.org/10.1145/2451116.2451124
https://www.uber.com/en-CH/blog/michelangelo-machine-learning-platform/
https://www.uber.com/en-CH/blog/michelangelo-machine-learning-platform/
https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html

	Abstract
	1 Introduction
	2 Coarse-Grained Energy Attribution
	3 Thread-Level and NUMA-Aware Energy Attribution
	3.1 Relevant Factors in Energy Attribution
	3.2 Fine-Grained Attribution Model

	4 EnergAt: Prototype Implementation
	5 Attribution Model Evaluation
	6 Limitations
	7 Challenges and Opportunities
	Acknowledgments
	References

