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ABSTRACT
Reducing the carbon emission of computing systems has become
a first-order optimization goal distinct from optimizing for per-
formance or energy consumption. Carbon emissions are due to
application execution on a target system (operational emissions)
and the production, transportation, and disposal of the system itself
(embodied emissions). This paper investigates the impacts of differ-
ent resource configurations in terms of available DRAM memory
on the overall carbon emission of individual application executions.
We first propose an application-centric carbon footprint model that
considers DRAM and CPU.We then study the model using a widely-
used key-value store (RocksDB) and Graph500 applications. The
results for RocksDB indicate that the minimal emission configura-
tion is application dependent and can lead to significant emission
reductions compared to application-oblivious configurations that
use higher DRAM capacity without improving performance. For
some applications, small performance degradation may lead to
substantial additional emission reductions.
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1 INTRODUCTION
Performance improvement, energy consumption reduction, and a
reduced carbon footprint are distinct optimization goals. In this pa-
per, we aim to illustrate and model the tradeoffs in this optimization
space and provide guidelines to data center service providers as well
as application users who want to reduce their carbon footprints.

In this paper, we focus on the performance, energy consumption,
and carbon footprint of the compute (CPU) and memory system
(DRAM main memory). The carbon footprint should reflect the
carbon emission incurred during the manufacturing, transportation,
and disposal of the computing system, i.e., its embodied emissions,
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as well as during its active operation, its operational emissions.
Current literature reports that the majority of the carbon footprint
of computing systems is attributed to its manufacturing process
rather than its operation, and the footprint increases with hardware
capabilities, such as more CPU cores, DRAM capacity, and others [7,
8, 15]. Modern CPUs have multiple cores, allowing an increase in
performance by assigning more cores to an application, which
also leads to an increase in energy consumption and associated
operational carbon footprint. However, the higher performance also
means that resources are freed up sooner and can be used by other
application executions, thereby reducing the share of embodied
emissions for each execution.

Different resource configurations have different impacts on the
carbon footprint of an application or data center workload. For
the purposes of this paper, a resource configuration specifies the
amount of DRAM main memory available for each execution of
an application or workload. The number of cores assigned to an
application execution is assumed to be fixed to allow a better un-
derstanding of the impact of the memory size on the program
performance and overall carbon emission, including the CPU.

Reducing carbon emissions in computing systems is a critical
objective, and our focus lies specifically on minimizing the carbon
footprint by reducing the DRAM capacity allocated to applications.
Intriguingly, our empirical analysis reveals that when reducing the
memory allocated to applications, the degradation in performance
follows a non-linear pattern rather than a linear one. This finding
suggests that optimal configurations of memory utilization exist for
applications where memory reduction can be achieved without sub-
stantial performance degradation. Identifying and leveraging these
optimal memory usage patterns can significantly reduce memory
consumption and decrease carbon footprint without compromising
overall system performance. To further support this, we propose
a model that establishes a relationship between an application’s
memory usage and carbon footprint. This model considers an appli-
cation’s CPU utilization, memory accesses, and I/O characteristics
to quantify its carbon emissions associated with different memory
usage configurations. The model provides valuable insights into the
potential reduction in carbon footprint achievable by optimizing
memory utilization, thereby paving the way for designing more
sustainable and efficient computing systems.

Experimental results based on a widely-used key-value store,
RocksDB [1], and an in-memory graph application, Graph500 [13],
show that the carbon emissions of the applications are non-linear
with respect to the assigned memory sizes. Further, based on our ex-
perimental configuration and model, the embodied carbon footprint
does not always dominate the operational carbon footprint.

The contributions of this paper are

• an application-centric view of carbon emissions that allows
application-specific emission optimizations. Specifically, we
show that by changing the amount of DRAM assigned to
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individual application executions, carbon emissions can be
optimized for different performance needs.
• the observation that different configurations with the same
performance may have different carbon footprints (for ex-
ample, RocksDB’s [1] sequential data access).
• a better understanding of the tradeoffs between performance
and carbon emission that users or data center service providers
can use to establish different levels of environmentally friendly,
low carbon emission application execution modes.

Our future work will include a more detailed evaluation of
the configuration spaces (e.g., number of CPU cores, GPUs, SSDs,
HDDs) and their carbon emission models across a wide range of
applications. It is also still an open problem how the observed appli-
cation behaviors under different configurations can be effectively
exploited through offline and online strategies, i.e., how the best
configurations can be selected for each application execution in a
multi-tenant environment.

2 BACKGROUND
In recent years, reducing the carbon footprint in datacenter sys-
tems has become a significant research focus due to the escalating
environmental concerns and the increasing energy demands of
modern computing infrastructures. A key aspect of this research is
the development of models and strategies that effectively mitigate
the environmental impact of datacenters while maintaining their
operational efficiency.

2.1 Studies on Carbon Footprint Reduction
Numerous studies have explored strategies and techniques to reduce
the carbon footprint in datacenter systems. This subsection provides
an overview of some key research directions in this domain.
Hardware Design and Architectural Innovations: Studies have
explored hardware-level improvements and architectural innova-
tions to enhance the energy efficiency of datacenter systems [3].
This includes advancements in server design, compute, memory,
and storage subsystems, and power delivery mechanisms. As prior
studies have shown, hardware optimizations such as low-power
processors, energy-aware memory systems (e.g., LPDDR [7]), and
efficient power distribution contribute to reducing the carbon foot-
print of datacenters.
Energy-Efficient Resource Allocation: One prominent research
direction involves optimizing resource allocation in datacenters
to minimize energy consumption [9, 14]. For example, studies
have proposed efficient dynamic resource provisioning algorithms
and workload consolidation techniques to allocate resources based
on demand. These approaches consolidate workloads onto fewer
servers, thereby reducing power consumption and lowering carbon
emissions.
Renewable Energy Integration: Another area of focus revolves
around integrating renewable energy sources into datacenter oper-
ations. Researchers have explored the utilization of solar, wind, and
hydroelectric power to supplement or replace traditional power
sources [10]. Integrating renewable energy into datacenters helps
reduce reliance on fossil fuels, significantly reducing carbon emis-
sions. A recent U.S. EPA report shows a high 0.433 kg CO2 per kWh

emission. As we show, these emissions can significantly increase
both operational and embodied carbon footprints [4].
Power Management Techniques: Besides the above approaches,
various power management techniques have been investigated to
optimize energy usage within datacenters. These techniques range
from CPU throttling to dynamic voltage frequency scaling (DVFS)
and workload scheduling algorithms. Bymanaging power consump-
tion at the server and the datacenter levels, these approaches aim
to improve overall energy efficiency [6].

2.2 Model for Carbon Footprint Reduction:
One crucial aspect of reducing the carbon footprint in datacenters is
the development of models that quantify the relationship between
energy consumption and carbon emissions. Such models provide
a basis for evaluating the carbon emission impact of datacenter
operations and identifying improvement opportunities.

More recently, researchers proposed an Architectural Carbon
Modeling Tool (ACT) [7]. ACT facilitates carbon-aware design space
exploration in hardware design. ACT consists of an analytical, archi-
tectural carbon footprint model and optimization metrics tailored
to specific use cases. The tool enables the estimation of the car-
bon footprint of hardware by considering factors such as workload
characteristics, hardware specifications, semiconductor fab charac-
teristics, and environmental factors.

One of the critical contributions of ACT is the inclusion of em-
bodied carbon in the carbon model. Embodied carbon refers to the
emissions generated during the design and manufacturing phase of
hardware, which are then spread over the lifetime of the hardware
platform. The model combines operational carbons, the carbon
emissions resulting from energy consumption during application
execution, and embodied carbon, which includes packaging over-
heads and the embodied carbon of individual hardware components.

ACT proposes four sustainability-driven optimization metrics to
aid in sustainable system design exploration. These metrics enable
balancing carbon emissions with other performance and energy
considerations specific to different use cases. Examples of these
metrics include carbon-delay-product for balancing carbon and
performance in data center scenarios and carbon-energy-product
for balancing carbon and energy in sustainable mobile devices.
The choice of optimization metric depends on the dominant factor
contributing to the overall carbon footprint.

Overall, ACT addresses the need for quantifying and incorporat-
ing sustainability in hardware design space exploration.

2.3 Open Challenges
While significant progress has been made in reducing carbon emis-
sions in datacenter systems, challenges remain. Factors such as
workload diversity and hardware resource heterogeneity (e.g., mem-
ory and compute heterogeneity), scalability, and cost considera-
tions pose ongoing research questions. Addressing these challenges
requires holistic approaches that combine innovative modeling,
system-level optimizations, and efficient resource management
strategies. While in this work, we focus on application-centric mod-
eling with respect to memory and compute, a wider analysis of
system resource use (e.g., GPU) with respect to carbon footprint is
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required, both for single application executions as well as multiple
application executions in a multi-tenant environment.

3 NEED FOR APPLICATION-CENTRIC
CARBON EMISSION MODEL

Recent work has shown that carbon emissions due to production,
transportation, and disposal, i.e., embodied carbon emissions (𝐸𝐶𝐹 ) of
a computing system can be significantly larger than its operational
carbon emissions (𝑂𝑃𝐶𝐹 ) defined as the carbon emissions needed to
produce the energy to operate the system [7, 8, 15]. A basic model
for the carbon emissions of an application, 𝐶𝐸𝑎𝑝𝑝 running on a
computing system is therefore

𝐶𝐸𝑎𝑝𝑝 = 𝑡𝑎𝑝𝑝 ∗𝑂𝑃𝐶𝐹 +
𝑡𝑎𝑝𝑝

𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒
∗ 𝐸𝐶𝐹

where 𝑡𝑎𝑝𝑝 is the execution time of the application and 𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒

is the lifetime of the computing system, typically between two and
five years. In our evaluation, we use three years. This basic model
does not consider the use of renewal energy during manufactur-
ing or operation of the computing system which can significantly
impact the overall carbon emissions (carbon intensity). We will
need to refine this basic model to account for different resources
available for an application’s execution, and the resulting impact on
its performance, operational emissions, and embodied emissions. A
resource profile, called a configuration (𝑐𝑜𝑛𝑓 ), is a vector of compute,
memory, and storage resources with their specific amounts. For
the purposes of this paper, we limit a configuration to the amount
of available main memory (DRAM). The overall carbon emission
that can be attributed to an application’s execution under a given
configuration is modeled as:

𝐶𝐸𝑎𝑝𝑝 (𝐶𝑃𝑈 ) = 𝑡𝑎𝑝𝑝 (𝐶𝑃𝑈 ) ∗𝑂𝑃𝐶𝐹 (𝐶𝑃𝑈 ) +
𝑡𝑎𝑝𝑝 (𝐶𝑃𝑈 )
𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒

∗ 𝐸𝐶𝐹 (𝐶𝑃𝑈 )

𝐶𝐸𝑎𝑝𝑝 (𝐷𝑅𝐴𝑀) = 𝑡𝑎𝑝𝑝 (𝐷𝑅𝐴𝑀) ∗𝑂𝑃𝐶𝐹 (𝐷𝑅𝐴𝑀) +
𝑡𝑎𝑝𝑝 (𝐷𝑅𝐴𝑀 )
𝑙𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒

∗ 𝐸𝐶𝐹 (𝐷𝑅𝐴𝑀)

𝐶𝐸𝑎𝑝𝑝 (𝑐𝑜𝑛𝑓 ) = 𝐶𝐸𝑎𝑝𝑝 (𝑐𝑜𝑛𝑓 .𝐶𝑃𝑈 ) +𝐶𝐸𝑎𝑝𝑝 (𝑐𝑜𝑛𝑓 .𝐷𝑅𝐴𝑀)

The key difference to previous work is that each application
is "charged" for the amount of embodied and operational carbon
emissions and types of resources it is using, i.e., the configuration
for its execution. In other words, our approach is application fo-
cused rather than supporting, for example, architectural system
design explorations [7]. The configuration space for an application
can be rather large and may have different configurations for best
performance, energy usage, and carbon footprint. A configuration
space may also be limited due to shared resources in a multi-tenant
environment. If performance is the main consideration, we are in-
terested in finding the best configuration 𝑐𝑜𝑛𝑓 _𝑚𝑖𝑛 that minimizes
the carbon footprint of an application while respecting a given
performance constraint.

Find 𝑐𝑜𝑛𝑓 _𝑚𝑖𝑛 ∈ 𝐶𝑂𝑁𝐹_𝑆𝑃𝐴𝐶𝐸 such that
(1) 𝐶𝐸𝑎𝑝𝑝 (𝑐𝑜𝑛𝑓 _𝑚𝑖𝑛) is minimal and
(2) 𝑡𝑎𝑝𝑝 (𝑐𝑜𝑛𝑓 _𝑚𝑖𝑛) ≤ (1 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) ∗ 𝑡𝑎𝑝𝑝 (𝑐𝑜𝑛𝑓 _𝑓 𝑎𝑠𝑡𝑒𝑠𝑡)

CPU Parameters
Parameter Value
Power Consumption per Core 0.01 kW
US Energy to Carbon Conversion 0.433 kg CO2/kWh [4]
Core Area 1 cm2

Number of Cores 8
Energy per Area 0.90 kWh/cm2 [7]
Gas per Area 0.175 kg CO2/cm2 [7]

DRAM Parameters
Parameter Value
Active Power (8 GB) 0.003 kW
Carbon Footprint per GB 0.6 kg CO2/GB [7]

Table 1: Hardware Parameters and Constants Used.

where 𝑐𝑜𝑛𝑓 _𝑓 𝑎𝑠𝑡𝑒𝑠𝑡 is the configuration with the best perfor-
mance, and 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ≥ 0 is the performance reduction that is
acceptable to the application user to achieve a better carbon emis-
sion outcome. For example, an acceptable performance reduction
of 10% is specified as 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.1.

4 EXPERIMENTAL RESULTS
We first describe our approach to estimating carbon footprint and
our overall assumptions, followed by our analysis of two widely
studied applications.

Algorithm 1 Calculate CPU and DRAM Carbon Footprint
1: cpu_rt_lifetime← app_runtime / cpu_lifetime
2: dram_rt_lifetime← app_runtime / dram_lifetime
3:
4: cpu_energy← app_runtime × power_per_core × num_cores
5: energy_embodied← energy_per_area × US_energy_to_carbon
6: cpu_carbon_footprint ← (gas_per_area + energy_embodied) ×

core_area × num_cores × cpu_rt_lifetime
7:
8: dram_energy ← (memory_size_GB / 8) × DRAM_power_per_8GB ×

app_runtime
9: dram_carbon_embodied ← memory_size_GB ×

DRAM_carbon_footprint_per_GB × dram_rt_lifetime
10: dram_carbon_active← dram_energy × US_energy_to_carbon
11: dram_carbon_footprint ← dram_carbon_active +

dram_carbon_embodied

4.1 Approach to Estimating Carbon Footprint
In this study, we focus specifically on analyzing the carbon footprint
of CPU and DRAM while deferring a comprehensive examination
of end-to-end hardware, including storage and network, for our
future research. A fundamental aspect of our approach is the assign-
ment of operational and embodied carbon footprints to individual
applications. Algorithm 1 outlines the methodology employed to
calculate the CPU and DRAM carbon footprint, taking into account
various hardware and carbon footprint parameters as depicted in
Table 1. The algorithm incorporates factors such as runtime, power
consumption, energy per area, gas emissions per area, core area,
and the number of cores in its calculations.
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For our analysis, we use the hardware parameters identified
using prior studies, as shown in Table 1. For example, for the power
consumption per core, we use 0.010 kWh, area per core is 1 𝑐𝑚2,
and the number of physical cores is 8 (with 32 threads). For CPU
and DRAM embodied value parameters, we use the values from
prior published studies [7] and other available resources. These
values serve as estimates that allow the assessment of the impact
of a reduced DRAM allocation on the performance and carbon
footprints of CPU and DRAM.

First, we calculate the active energy consumption for each mem-
ory capacity by multiplying the runtime by the power consumption
per core. Then, we calculate the carbon emissions by multiply-
ing the active energy consumption by the energy to the carbon
conversion factor, using the recently published report from the
Environmental Protection Agency [4].

Next, we calculate the embodied carbon footprint per core by
multiplying the gas emissions per area and energy per area with the
area per core. This represents the carbon footprint associated with
the physical manufacturing of the CPU.We use the values identified
by a recent study [7] for our study. We also calculate the total area
occupied by the CPU cores by multiplying the area per core by
the number of cores. To calculate the total carbon footprint for a
given memory capacity configuration, we combine the operational
carbon emissions and the embodied carbon footprint.

The algorithm also measures the carbon footprint of DRAM. For
our particular experiments, we observe that the carbon footprint
of DRAM is lower than the carbon footprint of our selected 8-core
CPU.

4.2 Application Analysis and Hardware Setup
To understand the performance vs. memory capacity tradeoff and
their resulting carbon footprint implications, we select a popular
key-value store, RocksDB, and the popular graph500 benchmark.

RocksDB [1] is a widely used, high-performance key-value store
that offers data reliability and durability. It is commonly used as
a backend for large-scale applications, including machine learn-
ing workflows. RocksDB uses a log-structured merge tree, which
efficiently utilizes both memory and disk space. It leverages a con-
figurable in-memory caching mechanism to enhance read perfor-
mance by minimizing disk I/O operations. Therefore, RocksDB di-
rectly benefits fromhighermemory capacity. Additionally, RocksDB
implements memory management techniques to strike a balance
between performance and memory usage. Previous research has
demonstrated that, in real-world scenarios, the memory capacity
is often much smaller than the actual size of the database, and the
application’s access patterns can exhibit significant variations.
Graph500: Graph500 [13] is a benchmark designed to assess the
performance of computing systems when solving graph-based prob-
lems. It specifically focuses on evaluating the memory and com-
putational capabilities of these systems. The benchmark evaluates
the efficiency of graph algorithms in terms of memory utilization,
which includes both CPU and DRAM. We utilize the breadth-first
search (BFS) and Single-Source-Shortest-Path (SSSP) benchmarks
as representative workloads. Unlike RocksDB, this application does
not involve I/O operations. However, insufficient memory capacity
can lead to disk swapping and significantly impact performance.

Hardware Setup: For our analysis, we use the CloudLab system,
with two memory sockets totaling 120GB, a 64-core, 2.8 GHz AMD
7543 processor, and a 1.6 TB NVMe SSD. The NVMe SSD offers
maximum read and write bandwidths of 1.4 GB/s and 0.9 GB/s,
respectively. We run all applications on a Linux 5.14 kernel.

4.3 Impact of Memory + I/O Heavy RocksDB
We analyze our model with RocksDB, which is both memory and
I/O intensive. This study mainly focuses on the correlated impact
of memory capacity and the corresponding impact of CPU and
memory carbon footprint.

For our analysis, we vary the memory capacity sizes from 20GB
to 120GB, representing RocksDB deployment under different amounts
of memory on a system. For RocksDB, which generates a NoSQL
database, we use a database size of 120GB, which corresponds to
40 million key-value pairs and a 4KB value size. It is worth noting
that the case where the database size is equal to the available mem-
ory size is idealistic and impractical in real-world scenarios where
the application’s memory size is often provisioned with far lower
capacity than the total size of the database.

We evaluate two common access patterns, namely random read
("multi-readrandom") that fetches more than one key for each access
and sequential read ("readseq") that performs pointed queries. The
purpose of the experiment is twofold: first, to examine the effect
of memory size on throughput for different access patterns, and
second, to analyze the corresponding carbon footprint. To conduct
our analysis, we employ the commonly used dbbench workload [2].
To maintain brevity, we present only the overall runtime required
to complete the workload. However, it is important to note that
the overall application throughput is directly proportional to the
runtime for dbbench.
RocksDB Memory Capacity vs. Performance Tradeoffs: Fig-
ure 1a shows the performance (i.e., runtime) vs. memory size im-
plications. The results reveal interesting variations in performance
based onmemory size and access pattern. For the random access pat-
tern, higher memory sizes lead to significantly improved speedups.
We observe the highest throughput (and lowest runtime) of ap-
proximately 830K ops/sec with a memory size of 120GB. However,
it is important to note that the degradation is not linear for the
random read workload beyond the idealistic case of using the entire
memory for the database. The throughput decreases gradually as
the memory size decreases, but the degradation rate slows down.
This suggests that there may be diminishing returns in terms of
performance improvement as memory sizes continue to decrease.
It also means that for smaller memory sizes, the application can
tolerate significant reductions in available memory (e.g.: from 60
GB to 20 GB) with only little impact on performance.

On the other hand, the sequential read access pattern exhibits
a different trend. The throughput remains relatively stable across
different memory sizes, ranging from around 400K to 500K ops/sec.
This is because, even with a low memory budget, for sequential
access, the OS continuously prefetches (next 𝑁 ) sequential blocks
from the disk to memory, which avoids the need to load the entire
database into the memory, also reducing the active working set
size. This suggests that the sequential read access pattern is less
sensitive to changes in memory size than read-random, i.e., the
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Figure 1: RocksDB: Carbon Footprint and Runtime Analysis
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Figure 2: Graph500: Carbon Footprint and Runtime Analysis
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Figure 3: RocksDB Total Carbon Footprint

application can tolerate significant memory reductions without
affecting performance. Note that, as prior studies have highlighted,
sequential access patterns are quite common on several large-scale
systems and for real-world workload traces [5].
Memory Capacity vs. CPU Footprint: Figure 1b and Figure 1c
compare the carbon footprint of CPU and DRAM for a single ap-
plication run and Figure 3 shows the total CPU + DRAM carbon
footprint. To identify the embodied and active carbon footprint, we
use the values from prior work [7].

First, for the random read access pattern, with a hypothetical
scenario where the dataset fully fits in memory (120 GB). In this
case, the application runtime is significantly shorter, leading to a
substantial reduction in the CPU carbon footprint. However, as
we reduce the memory size, the application incurs I/O operations,

resulting in longer runtimes and an overall increase in the CPU
carbon footprint.

However, when the memory capacity is half (60 GB) or lower
than half the database size, the access overheads shift to I/O. As
a result, further reducing the memory capacity along the x-axis
shows that the runtime does not change significantly. For instance,
when using only 20 GB of the memory capacity, compared to the
60 GB case, the CPU carbon footprint increases by only 11%. This
reduction in memory capacity can effectively reduce both embodied
and operational carbon footprints.
Memory Capacity vs. DRAM Footprint: The carbon footprint
of DRAM is primarily influenced by the memory configuration
utilized and its impact on runtime. This relationship is depicted
in Figure 1c, showcasing interesting trade-offs between memory
capacity and carbon footprint.

When employing a higher memory capacity (e.g., 120 GB), where
the entire application dataset fits in memory (a hypothetical setup),
the application runtime is significantly shorter, which dominates in
reducing the overall DRAM carbon footprint despite increasing the
carbon footprint from higher capacity. Conversely, as the DRAM
capacity is reduced, the runtime substantially increases, leading
to a higher overall carbon footprint. However, beyond a certain
threshold (e.g., 60 GB), the advantages of lower DRAM capacity
from reduced operational and embodied costs outweigh the increase
in runtime, once again leading to a reduction in the overall carbon
footprint.



HotCarbon ’23, July 9, 2023, Boston, MA, USA Sudarsun Kannan and Ulrich Kremer

These results show that by carefully managing memory re-
sources and selecting an appropriate memory size based on work-
load requirements, substantial reductions in the overall carbon foot-
print can be achieved, promoting sustainability in computational
operations.

4.4 Memory-intensive Graph500
We next evaluate Graph500 using BFS and SSSP benchmarks that
use 32 application threads on 8 physical cores. In Figure 2, we show
the runtime and the impact on CPU and DRAM carbon footprint.
The evaluation of the Graph500 benchmark provides valuable in-
sights into performance, memory capacity, and carbon footprint.

Firstly, in our Graph500 workload, approximately 99 GB of mem-
ory is required. As a result, there is no significant difference in
performance between using 120 GB and 100 GB. However, accu-
rately identifying and utilizing the actual memory required by the
application can help reduce both CPU and DRAM carbon footprints.

Furthermore, we observe that the runtime of the Graph500 bench-
mark tends to increase as the memory size decreases. This suggests
that larger memory sizes facilitate faster execution of graph algo-
rithms. For instance, when the memory size is reduced to 80 GB,
the runtime increases by 1.35×, consequently increasing the CPU
carbon footprint by 1.3×. Subsequently, further reducing the mem-
ory to 60 GB leads to a runtime increase of 5.1×, mainly due to the
need to swap memory to disk, which generally incurs slower per-
formance. Consequently, both the DRAM and CPU footprints also
increase. Graph500’s carbon emissions exhibit a strong stepwise
behavior where crossing a minimal memory threshold leads to a
significant increase in the overall carbon footprint. These findings
demonstrate that, unlike in RocksDB’s sequential read access pat-
tern, reducing memory capacity for certain types of applications
could substantially increase the overall runtime and CPU carbon
footprint. Identifying this memory threshold will be crucial for an
effective carbon emission management.

5 CARBON EMISSION MANAGEMENT
STRATEGIES

We envision different carbon emission strategies that either use
models to determine a configuration that represents the desired
tradeoffs between performance and carbon emission or use dy-
namic, feedback-directed algorithms to converge on such a config-
uration. These strategies can be implemented within the operating
system or through specialized runtime system support.

Previous work has used machine learning strategies to build
off-line performance and energy models for applications and their
configuration spaces [11, 12]. We will build regression models that
map configurations, CPU footprints, and memory access patterns
to performance, energy consumption and carbon emission. The
CPU footprints and memory access patterns are measured through
performance counters. During the training phase of an applications,
different configurations with different workloads are used to collect
the data needed for training. As in [11], we will experiment with
different regression and machine learning approaches to determine
the best model for each application. Different CPU footprints and
memory access patterns may be clustered in order to simplify the
models.

The minimal configuration with acceptable performance (within
specified tolerance) is computed at runtime as a solution to a con-
strained integer optimization problem or as an approximation to
such a solution. Reconfigurations may be necessary in a multi-
tenant system due to sharing of common resources or changes in
data access patterns within a single application. The runtime costs
of online observation and reconfiguration overheads have to be
taken into account. However, we believe that such costs are small
compared to the expected benefits of configuration optimization
for carbon emission reduction.
Extending OS Memory Management: Because the OS is respon-
sible for per-application and system-wide memory allocation, we
aim to design a feedback-driven OS-level memory management
extension to identify the minimal memory required by an applica-
tion without increasing CPU runtime, thereby keeping the memory
carbon footprint low. The OS memory manager plays a critical role
in managing the allocation and deallocation of memory resources
for running applications. To optimize memory usage and reduce the
carbon footprint and environmental impact, the memory manager
can employ various techniques.

Our approach is to leverage sophisticated memory profiling and
analysis algorithms. By analyzing the application’s memory access
patterns and resource utilization during runtime, the memory man-
ager can gain insights into the application’s memory requirements.
As shown in our experimental results on RocksDB, for applications
performing sequential data access, the memory footprint could be
significantly reduced by identifying the portions of memory that
are frequently accessed and those that are rarely used and moving
the data in and out of memory without substantial carbon overhead.
We also expect changes to the OS scheduling mechanisms with a
focus on reducing the carbon footprint.

6 CONCLUSION AND FUTUREWORK
Improving the carbon emissions of individual application execu-
tions in addition to entire computing systems has become a first-
order optimization objective. Our presented results indicate the
potential benefit of carbon-aware resource assignments for appli-
cations and data access patterns such that their carbon footprint is
minimized with no or only slight performance penalties.

Our future work will also include the investigation of an ex-
tended configuration space beyond DRAM, including heteroge-
neous memory (e.g.: SSD, HDD) and heterogeneous computing
architectures (e.g.: GPU, ASIC, FPGA). Applications may have a
limited set of data access patterns that may be included as part of
a configuration (input dependencies). Further, there is a need for
new optimization strategies that require novel offline and online
approaches, which we will further investigate in the future. Finally,
optimizing the carbon emissions of multi-tenant systems will be
an important future challenge.
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