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ABSTRACT
Enterprises today aspire to optimize the operating costs and carbon
footprint (CFP) of their IT operations jointly without compromising
their business imperatives. This has given rise to a hybrid approach
in which enterprises retain the dynamic choice to leverage private
data centers and one or more public clouds in conjunction. While
cloud service providers (CSPs) have long provided APIs for estimat-
ing, reconciling, and optimizing operating costs, they have only
recently started exposing APIs related to CFP.

Indeed, this is a step in the right direction. Nevertheless, our
analyses of these APIs reveals many gaps that need to be addressed
to facilitate sizing and placement decisions that can factor in car-
bon. First, there is a lack of standardized, transparent methodology
for CFP quantification across different CSPs. Second, the coarse
granularity of the CFP data provided today can help with post-facto
reporting but is not suitable for proactive fine-grained optimization.
Last, enterprises themselves are unable to independently compute
the current CFP or estimate potential CFP savings since CSPs do
not share the required power usage data.

To address these gaps, enterprises have started developing their
own carbon assessment methodologies and tools to estimate the
CFP of workloads running on public clouds using the available user-
facing APIs. These systems hold the promise for an independent and
unbiased evaluation and estimation of relative savings between dif-
ferent deployment options by cloud users. We describe and analyze
the details of CSP-native carbon-reporting tools and their quan-
tification methodology, and the "outside-of-the-cloud" estimation
approaches. Finally, we present opportunities for future research in
the direction of trustworthy, fine-grained, public cloud workload
CFP estimation, which is a prerequisite for meaningful realization
of carbon optimization.

CCS CONCEPTS
•Hardware→ Power estimation and optimization; •General
and reference → Metrics; Performance; Evaluation; • Applied
computing → Multi-criterion optimization and decision-making.
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1 INTRODUCTION
Multiple inflection points are changing the way enterprise CIOs
are thinking about software that runs in their enterprise. The rising
energy footprint of data centers, which already accounts for 200
TWh per year (around 1% of total global electricity demand) [2], is
something they need to contend with. This is driven by the prolifer-
ation of AI [52], including the recent explosive spurt in generative
AI [42, 55], profusion of data created by sensors at the edge and via
customer interactions [43, 44], cloud-based gaming, cryptocurrency
mania [32], etc., coupled with the flattening of Moore’s law (see
e.g., [14], [5]), over-provisioning of compute resources [23], and
the focus on speed of product delivery over efficiency during op-
erations. The concomitant increase in enterprise carbon footprint
(CFP)1 has brought a sense of urgency within enterprises to first
measure and then reduce their carbon emissions associated with
the direct or indirect operations of their businesses [51]. This is a
notable departure from the erstwhile sole focus on cost and perfor-
mance and is in keeping with the sustainability grand challenge in
computing [8]. A second trend is the evolution of the IT footprint
for modern enterprises. Modern enterprise customers typically have
their workloads deployed to both private data centers and more
than one public cloud [11]. This is driven by a variety of reasons,
including resilience and responsiveness, concentration risk, data
sovereignty, and the need to co-locate data and compute for best
performance, private data center capacity, availability of resources
on specific clouds in various geographies, cost for cloud services,
etc. [31]. The combination of these two important and growing
trends is leading enterprises to ask the following questions.

(1) How can the energy and CFP of workloads running in private
data centers and public clouds be quantified, optimized, and re-
ported using a consistent approach?
(2) How can intelligent decisions be made regarding workload
migration from private data center to cloud or from one CSP to
another based on their CFP, availability of renewable energy, and
other key factors while achieving SLOs?
(3) What are the estimated energy and CFP savings if they mod-
ernize the workload and/or the underlying IT hardware leveraging
GPUs, TPUs, AIUs [22]?

To draw an analogy, cloud service providers (CSPs) and third-party
vendors have long provided application programming interfaces
(APIs) that allow their customers to systematically determine the
services that are available in various geographies and their associ-
ated costs. Application performance management (APM) tools like
Dynatrace [12, 48], Instana [28], and Prometheus [54] have been

1Carbon footprint refers to the amount of greenhouse gases (GHG) emitted due an
activity. It is expressed in units of mass of carbon-dioxide equivalent gases (CO2-eq)
and indicates the sum total of all GHG emissions and not just CO2 .
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Feature Google Cloud Platform (GCP) Microsoft Azure Amazon Web Services(AWS)
Service coverage Services list [19] Azure and Microsoft 365 [35] S3, EC2, and rest as one category
Geographic coverage Worldwide Worldwide Worldwide
Aggregation level Region, service, and subscription

level
Region, service, and subscription
level

Limited aggregation to geogra-
phies like AMER and EMEA and
services for all accounts

Time granularity Monthly Monthly Monthly
Emissions scope Scope1+Scope2+Scope3, location

based [24]
Scope1+Scope2+Scope3, location
based

Scope1+Scope2, market
based [24]

Power usage effective-
ness (PUE) [21]

Quarterly and trailing twelve-month
(TTM) PUE [18] for data center

Design and operational PUE for
data center [38, 40]

Precise PUE not shared [3]

Carbon intensity
(CI) [20]

Electricity maps [33] or IEA [1] in
case of limited data

Limited [40] Limited [3]

History Starting Feb 15, 2021 Azure: last 5 years of enrollment;
Microsoft 365: last 12 months usage

Starting Jan 1, 2020

Table 1: Comparison of client CFP services provided by themajor CSPs and some data underpinning (PUE and CI) the services.

developed to collect service-level metrics and application topolo-
gies. These can be coupled with tools such as Grafana [6] and
Kibana [49] to create dashboards. This suite of tools allows one
to continuously monitor performance and also estimate the costs
and performance of running a workload in a different hardware
configuration/location.

On the other hand, CSPs have just begun to respond to the ques-
tions enterprises are posing around carbon metrics and estimation.
The efforts are in preliminary stages and present several challenges
around the granularity at which data is available, completeness of
data, and consistency of different carbon estimates that need to
be addressed. Given the complexity of the problems, akin to the
APM domain, tools, services, and open-source projects to assess the
energy and CFP from outside of the cloud are beginning to emerge
to help answer the questions previously mentioned.

In this paper, we first compare CSP APIs and reports for carbon
metrics and review emerging methods for calculating the energy
and CFP. We then identify the gaps and discuss research opportuni-
ties for carbon performance measurement (CPM) tools. We suggest
how current APM tools can be extended and explore new abstrac-
tions and tools to cover CPM. Our investigation leads us to conclude
that (1) hardware manufacturers need to provide more granular
and modular non-invasive power measurement hooks, and (2) CSPs
and their users (enterprise customers) are jointly responsible for
working together toward greater transparency that will allow for
meaningful energy and CFP calculations for workloads.

2 CSP CARBON EMISSION REPORTS
In this section, we survey and compare the features of and method-
ology for calculating CFP data provided by the three major CSPs
to the clients for use of their services, from the perspective of
their suitability for CFP reporting and optimization. The three
major CSPs—Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP)—have been providing dashboards
and APIs for quantifying, analyzing, and optimizing operational
costs for quite some time; however, CFP reports for a select set of
services have been a fairly recent addition. All three CSPs follow the
Greenhouse Gas Protocol (GHG) carbon reporting and accounting
standards [25] to generate client CFP reports.

The GHG protocol defines three scopes (scope 1, scope 2, and
scope 3) for GHG accounting and reporting purposes to help de-
lineate direct and indirect emission sources and improve trans-
parency [26]. Scope 1 covers a company’s direct GHG emissions
(e.g., emissions from owned or controlled vehicles, boilers, fur-
naces). Scope 2 accounts for GHG emissions from the generation of
purchased electricity consumed by the company, while scope 3 is
attributed to indirect emissions on account of the activities of the
company that occur from sources not owned or controlled by the
company. The three CSPs differ in the extent and the manner in
which they report emissions under the three scopes. In this paper,
we focus primarily on scope 2 emissions, the emissions due to the
consumption of electricity in data centers.

Table 1 captures some of the salient features and similarities /
differences across carbon emissions provided by leading CSPs and
transparency in the underpinning data and methodology. We next
briefly present and compare their CFP calculation methodologies.

GCP. Google’s methodology is the best explained of the three
CSPs [17]. For estimating CFP in GCP and proper apportioning
of total machine energy usage to its internal services, dynamic
power and idle power are separately identified. Hourly dynamic
power is allocated based on relative internal service CPU usage,
whereas the machine idle power is assigned based on each internal
service’s resource allocation (CPU, RAM, SDD, HDD). Also, the grid
carbon emission intensity data is tracked hourly and multiplied
with the hourly energy usage of each internal service to derive
the internal service’s location-based electricity CFP per hour and
location. In short, following the GHG Protocol [25], compute and
data center resource utilization is used as a weighting factor for
apportioning CFP. It is augmented by accounting for location-based
carbon emissions from electricity use and proportional allocations
of emissions due to non-electrical sources.
Azure. Microsoft has released an Emissions Impact Dashboard
consistent with GHG Protocol [25]. The methodology [37, 39] for
scope 3 emissions calculates the energy and carbon impacts for each
data center over time, using the information about most common
cloud infrastructure parts (hard disks, FPGA, steel racks) and the
manufacturing materials most commonly used in their data centers.
Power usage for scopes 1 and 2 Azure emissions is categorized by
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storage, compute, or network, and usage time is utilized for appor-
tioning emissions. Unlike GCP, the official methodology document
does not include much detail on how input data is collected or the
time granularity at which input data is processed for computing
CFP. According to their methodology as described in [34], power
consumption and resource usage metrics are mostly estimated and
not measured.

AWS. Amazon has recently released a sustainability dashboard.
Unlike GCP and Azure, however, it does not have any attached
API exposed yet. Also, across all three CSPs, one needs a billing
account to be able to access emissions data. The carbon emissions
model consists of five major areas: embodied emissions of both data
center facilities and IT hardware, carbon intensity of the grid, and
facilities and IT operational emissions [47]. Similar to Azure, AWS
does not disclose details on data collection methodology or time
granularity at which input data is processed for computing CFP.

The gaps and differences highlighted in Table 1 and evident
from the brief descriptions above limit the customer in getting a
holistic view of their enterprise CFP. Moreover, the lack of CFP
numbers at the entity level (e.g.,host, VM, containers) is a bigger
drawback in projecting and creating optimal resource-allocation
strategies for tasks like migrating to cloud. The upcoming area
of multicloud sustainability offers to customers the advantages of
getting the best of all CSPs rather than being bound to one specific
provider. Unless the carbon estimates provided by all third-party
clouds are well understood, optimization strategies are difficult to
create and execute in a reliable and robust manner across clouds
and geographies. Though the CSP’s CFP reports include emissions
from scopes 1 and 3, in this paper, we restrict our focus to Scope 2
emissions. Also, we do not explicitly address data center overhead
such as cooling, but only via the fidelity of PUE data [21].

3 THIRD-PARTY CFP ESTIMATION EFFORTS
Cloud users have been seeking to understand the environmental
impact due to their share of cloud usage for quite some time now.
Challenges in estimating this by tenants (users) themselves are
described in detail in [41]. At the time that [41] was authored, CSP-
based carbon accounting was available only for Azure [36]. Though
the three leading CSPs and some other prominent players currently
support carbon accounting for their services natively, as discussed
in Sec. 2, they differ in many aspects and currently do not fully meet
client needs. Hence, there has been quite some effort for estimating
CFP on public clouds, either by cloud tenants themselves or on
their behalf by third-party service providers and tools developed
by open-source efforts. We will refer to this collective effort as
third-party approaches (TPAs), the most prominent of which is by
Cloud Carbon Footprint [16], an open-source cloud carbon emissions
measurement and analysis tool, with climatiq [9], teads [15], and
Nordcloud Klarity’s GreenOps [29], among others.

One question that rightly arises is how reliable the TPA estimates
could be given the lack of visibility to them on the internals of a
public cloud deployment. To better answer this, we first present
brief overviews of the services deployment architecture in cloud
and the metering and bookkeeping required to enable fair and
accurate attribution of CFP per workload. (Recall from Sec. 2 that
not all CSPs are transparent about their bookkeeping.) We will then

Figure 1:High-level deployment architecture of services in a cloud.

go over the assumptions and methodology used by the TPAs to
identify the gaps and discuss the possibilities for bridging the same.

3.1 Cloud Deployment and Service Metering
Cloud deployment architecture. A high-level services deploy-
ment architecture for public clouds is shown in Fig. 1. Cloud services
are heterogeneous, broadly classified into infrastructure, platform,
and software as a service (i.e., IaaS, PaaS, and SaaS) classes. IaaS
class is the closest to hardware and simplest in terms of energy
attribution due to limited dependency on other services. Google’s
Compute Engine (GCE), Kubernetes Engine (GKE), and Amazon’s
Simple Storage Service (S3) are examples of IaaS services. PaaS and
SaaS services are layered on top of IaaS services, with some depen-
dency from SaaS to PaaS too. Google AppEngine and Google Docs
fall under the PaaS and SaaS categories, respectively. Apart from
external services, there can be some internal services, management,
and control-plane services at any of the layers that are used by the
external services or manage them (e.g., load balancers and control
plane of container services and serverless functions).

As depicted in Fig. 1, each cloud service can be deployed on
dedicated and/or shared compute, storage, and networking hard-
ware. Lower-level services are more likely to have a direct hardware
footprint, whereas the higher-level services will have an indirect
footprint via their use of lower-level services. Distributing the en-
ergy consumed at the hardware level among the users of the diverse
services in proportion to their actual usage at the hardware through
the entire software stack in a fair and accurate manner will require
extensive and rigorous metering and bookkeeping. A possible high-
level attribution approach is depicted in Fig. 2.
Service metering in Clouds for CFP. In Fig. 2, the data in input
boxes (1) through (3) is obtained by live metering of equipment-
or rack-level electricity consumption and per-process hardware
resource usage tracked by the operating system (OS). In the case
of higher-level services, additional service-specific metering (3)
will be required by the provider services. For example, a DBaaS
service (as a provider service) can perhaps track the resource usage
of each of its users (through system calls, loadable kernel modules,
eBPF [13], etc.) so that its electricity consumption can be rightly
apportioned. On the other hand, tracking direct use of resources at
the user-level can be difficult for SaaS applications like streaming
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services or Google Docs. Instead, these services generally only track
service-specific usage units, commonly termed functional units,
such as the number and size of videos streamed, and use those
for energy attribution purposes in combination with aggregate
functional units, resources, and electricity consumed by the service.

As a specific example, consider per-account energy computa-
tion for the Virtual Machine (VM) service. If the VMs that com-
prise the service are isolated from the other services and are de-
ployed on dedicated hardware, then the total energy consumption
on that hardware will constitute the aggregate energy for the VM
service, denoted 𝐸 (SVM). In such a case, in Fig. 2, 𝐸 (SVM) will be
provided by (2). (If the VM service uses shared hardware exclu-
sively or uses dedicated hardware in addition, then 𝐸 (SVM) will
be derived from (1) exclusively or both (1) and (2).) Let 𝐸 (SVM) =
𝐸idle (SVM) + 𝐸active (SVM), where 𝐸idle and 𝐸active denote the idle
and active parts of the total energy.2 Let 𝑉𝑀1 · · ·𝑉𝑀𝑛 denote the
𝑛 VMs that are part of the service, 𝑣𝐶𝑃𝑈1 · · · 𝑣𝐶𝑃𝑈𝑛 and𝑀1 · · ·𝑀𝑛

the number of vCPUs and amount of memory provisioned for the
VMs, respectively. Let 𝑢1 · · ·𝑢𝑛 denote the CPU utilization of the
VMs. The GHG protocol suggests that the idle energy of a service
be apportioned among its users by provisioned units, while active
energy will be by actual usage. Thus, energy attribution for 𝑉𝑀𝑖

can be given by:

𝐸 (𝑉𝑀𝑖 ) = 𝐸idle (SVM) ×
(
𝑤𝑐 · 𝑣𝐶𝑃𝑈𝑖∑

𝑘 𝑣𝐶𝑃𝑈𝑘

+ 𝑤𝑚 ·𝑀𝑖∑
𝑘 𝑀𝑘

)
+

𝐸active (SVM) × 𝑢𝑖 · 𝑣𝐶𝑃𝑈𝑖∑
𝑘 𝑢𝑘 · 𝑣𝐶𝑃𝑈𝑘

, (1)

where𝑤𝑐 and𝑤𝑚 denote the fractions of idle energy due to com-
pute and memory, respectively. If the service has overheads due
to common networking equipment or control plane nodes, the
contribution from those should be correctly factored in.

The GHG protocol or other standards do not mandate the tem-
poral granularity (per minute vs. month) or hardware granularity
(per machine vs. rack) at which the resource consumption is me-
tered. In fact, rationalized and well-documented estimates can be
substitutes for metering. Similarly, guidelines are quite open in the
functional units used by higher-level services. Though the stan-
dards mandate appropriately attributing resource consumption at
the shared infrastructure and services, the exact methodology is left
open. Thus, the approaches adopted by different cloud providers
can have significant differences, leading to difficulty in compar-
ing and managing CFP. Further, comprehensive carbon reporting
spanning all the catalogued services is currently not known to be
supported by any CSP.

To see how the differences in the aspects discussed here can
impact the reported numbers and the actions they can guide, note
that in Eq. (1), idle energy is split by CPU and memory provisioned.
CSPs have the choice of including other resources such as storage
and networking too, or even excluding memory. Also note that
run-time memory usage is not factored into (1). Thus, depending
on which resources are considered, energy and carbon attributions
can differ. Attributions will also differ based on what overheads are
considered, whether they are metered or estimated, how they are
metered or estimated, and how they are apportioned.

2Idle energy is the energy consumed by or attributed to a component (hardware or
software component) when it is in idle state, while active energy is the additional
energy consumed or attributed to the component when it is used to perform work.

Figure 2: Per-account carbon quantification framework.

As a second example, consider two users using equal amount of
resources for equal duration in a day but at different complemen-
tary time periods: one when the grid is powered by renewables,
and the other when fossil fuels are used. If usages or CI or both
are averaged over a day, then both the users will see identical CFP
and cannot effectively use the metric. The magnitude of error could
be glaring at the current CSP reporting granularity of one month.
Differences in other aspects can also be similarly misleading or
wanting. Appropriate levels of granularity and bookkeeping re-
quired can depend on the service, whose determination can be a
challenge by itself.

Thus, to enable comparison of the carbon metrics reported by
various CSPs and to use them for carbon-aware placement and
optimization, it is essential that various aspects/features of the
methodology be standardized. These include the following:

• Set of resource utilization metrics, service functional units,
and overheads used in apportioning electricity consumption

• Granularity at which metrics are collected
• Averaging interval for the collected metrics
• Electricity consumption apportioning formulas at various lev-

els, including overheads
• How CEF is determined (location-based vs. market-based) and

how carbon offsets and renewable energy certificates are handled
• Granularity at which PUE and CEF are applied
• Details of emissions calculations for scopes 1 and 3

Until accounting becomes standardized, CSPs should be more trans-
parent and share the details on the preceding aspects of their specific
implementation.

3.2 Client and Third-Party Approaches
TPAs make up for the lack of visibility into the details of a cloud
deployment and lack of information due to limited direct measure-
ments by models, estimations, approximations, and assumptions.
TPA approaches can be broadly classified into online or dynamic
approaches and offline or static approaches.
Online approaches. Online or dynamic approaches leverage re-
source consumption metrics that can be captured directly from
the hardware at runtime by the users of the service. These are
best suited to IaaS services (e.g., those providing dedicated bare-
metal servers, VMs, or container clusters). For these services, clients
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Figure 3: Offline third-party carbon estimation framework.

may be able to install custom agents that capture the resource and
power metrics pertaining to their usage from the OS via system
calls or utilities that rely on special device drivers. The RedHat
project Kubernetes Efficient Power Level ExporteR (Kepler) is one
such effort [46], which uses eBPF [13] to gather system-level fine-
grained metrics to compute pod-level energy. It is unclear whether
superuser privileges required for collecting detailed metrics would
be readily available in all cases. Further, determining overhead
usage incurred on behalf of the service on nodes (that host manage-
ment/control/internal services) that the agent does not have access
to will be difficult to gather.
Offline approaches. An overview of the more common offline
(static) approach used by many TPAs is shown in Fig. 3. TPAs rely
on service consumption costs and usage reports provided by the
CSPs as the starting point, from which coarse estimates on the
usage of different resources—namely CPU, memory, storage, and
network—are derived. The approach also relies on publicly avail-
able sources for assumptions on hardware configuration details,
data-center-wide resource utilization levels [30], and benchmarks,
both from standards bodies such as from SPEC [10] and ad hoc
ones, for estimating electricity per unit of resource usage. In other
words, a single coefficient is estimated per unit of usage for each
of the resources over a CSP’s data centers in a region, regardless
of hardware heterogeneity or the time of usage or the service for
which the resource is consumed. As can be seen, the estimates can
have wide discrepancies in comparison to actual measurements.
Furthermore, TPAs seem to completely ignore overheads incurred
at supporting systems and services and are oblivious to service
dependencies. These limitations are, in general, acknowledged by
the TPA providers [16].

3.3 Relevance and Validation of TPAs
Although CSP reports are available now with limited scope (which
is expected to expand), anecdotal evidence suggests that the demand
for third-party products and services for cloud CFP estimation is
growing and that the third-party providers (TPPs) have plans of
expanding the portfolio of their services. This interest is likely to
continue not only until CSP reporting is sufficiently mature, but
even beyond, due to the following reasons. First, despite the impre-
cise nature of their estimation, which can have non-trivial errors

in the absolute terms, TPAs seem to be sufficient for reasonably
gauging the relative carbon merits of different environments and
leveraging it for holistic CFP management in hybrid multicloud
environments. By design, due to the need to optimize by choosing
among the services of multiple providers, TPPs will likely have a
prominent role to play in carbon optimization in hybrid multicloud
environments just as in the APM space. Second, the TPAs can be
expected to evolve and enable a virtuous cycle of continuous im-
provement to reporting by CSPs. We envision that the discrepancy
in reporting that is very likely between TPPs and CSPs will compel
the latter to open up about their hidden overhead costs, infrastruc-
ture, service dependency, and accounting methodology, which will
in turn enable TPPs to refine their methodology and serve as an
independent evaluator as well as provider of solutions for carbon-
aware cross-platform multicloud deployments. Finally, the cloud
itself is still evolving, with new types of hardware and more novel
and agile service offerings. Hopefully, the new services will be built
with carbon and energy as first principles and integral facilities
for CFP accounting, which would enable CFP reporting from the
get-go. In the absence of such features, TPAs will have a significant
part to play—even in the estimation space—in the interim.

Evaluating third-party estimates. TPAs currently provide only
point estimates, which neither include confidence intervals nor
have been validated (to the best of our knowledge) due to the lack
of ground truth for their assumptions. With CSP reports trickling in
(which can serve as pseudo ground-truth), TPPs can start providing
accuracy metrics for their estimates. TPPs, however, may have to
come up with creative methods for gathering a sufficient number of
usage reports to provide statistically relevant accuracy measures.

4 RESEARCH OPPORTUNITIES
Carbon performance management (CPM) for hybrid multicloud is
nascent and is, as such, ripe for innovation on various fronts, espe-
cially to keep up with and include within its ambit the emerging
workloads and services, and progress in specialized hardware, such
as GPUs, TPUs, and AIUs [22] catering to them. Similarly, CPM
should cover non-x86 based systems such as the Z Mainframes [27],
sought after by enterprises for their energy efficiency. Research
is needed on the following: (1) The design of the right interfaces
between different layers in the system stack spanning chip and
system hardware / firmware, OS, and virtualization layers, and an
open framework to unify the heterogeneous space for seamless en-
ergy and other input monitoring, fair energy apportioning, and CFP
quantification and estimation. This will require the participation of
many players, including hardware vendors, CSPs and their users,
and the open source community. (2) Subtle aspects such as the im-
pacts and amortizations from tenant history and multi-tenancy to
CFP, which are not well understood and require attention, since co-
tenancy is a given on shared public cloud. (3) New techniques that
are evolving for estimating CFP for “to-be” workload placement
scenarios, design of workload shifting, migration, and dispatching
algorithms to increase the use of renewables and drive the cloud
to true zero carbon [7]. The immediate need, however, is to im-
prove CFP estimates of TPAs, under different data availability and
transparency conditions, for the rest of the research to be evaluated
objectively and be impactful. Here we discuss some thoughts.
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Approaches for improving TPA. Consider a VM service whose
plans are characterized by the number of vCPUs (𝑞𝑐 ) and the
amount of memory in GB (𝑞𝑚) provisioned. TPAs currently as-
sume a single or a small number of distinct coefficients each for the
vCPUs and memory to arrive at a carbon estimate. Usage report
from the CSP will indicate the total number of hours (ℎ) the service
was used for, the cost of the service, and, optionally, the associated
CFP. The TPA’s CFP estimate for a usage report of this service
would roughly be ($ cost kept aside for simplicity):

CFP = (𝑞𝑐 × ℎ × 𝑤𝑐 + 𝑞𝑚 × ℎ × 𝑤𝑚) × PUE × CI , (2)

where𝑤𝑐 and𝑤𝑚 are the resource usage coefficients—that is, esti-
mates for average energy consumed in kWh by a vCPU and a GB
of memory, respectively, per hour in the region of the CSP where
the VM is provisioned. Similarly, PUE and CI are TPA estimates.

In (2), 𝑤𝑐 and 𝑤𝑚 are estimates averaged (possibly with some
weights) over the entire spectrum of CPU and server configurations
andmemory types, whereas PUE andCIwould be averages over the
time of interest. Fine-grained PUE and CI values, even if available,
cannot be leveraged with coarse-grained usage reports.

Usage reports from the TPP’s client pool can be used, to begin
with, to assess the extent of discrepancy between their estimates
and CSP-provided CFP values. Clustering techniques can be used
to gain insights into the nature of discrepancy by classes such as
the resource type and size, usage duration, and time of the year;
CSP reports can be combined with self-reported data from clients
(such as the time of usage, % usage of resource) to understand if
they play a part. Finally, the collective data can be used to construct
models that can help in dis-aggregating the CSP report into various
components, thus helping to discover the extent of discrepancy in
each of the input quantities assumed by the TPA or their models or
both and possibly finetune them.

If, indeed, the CSP’s CFP computation follows the model in (2)
but for some overhead terms, then their CFP can be expressed as:
CFPCSP = (𝑞𝑐×ℎ×𝑤CSP

𝑐 +𝑞𝑚×ℎ×𝑤CSP
𝑚 +𝑂ℎ×ℎ+𝑂)×PUECSP×CICSP, (3)

where 𝑂ℎ and 𝑂 indicate the duration-of-use dependent and inde-
pendent overheads associated with the service in kWh. (Note that
resource-volume-specific overhead, if any, will be absorbed by the
resource energy coefficients.) The superscriptCSP indicates that the
associated quantity pertains to CSP. Letting 𝐹 = PUECSP ×𝐶𝐼CSP,
(3) can be expressed as

CFPCSP = 𝑞𝑐 · ℎ · 𝑤CSP
𝑐 · 𝐹 + 𝑞𝑚 · ℎ · 𝑤CSP

𝑚 · 𝐹 +𝑂ℎ · ℎ · 𝐹 +𝑂 · 𝐹
= 𝑄𝑐 · 𝑅CSP

𝑐 +𝑄𝑚 · 𝑅CSP
𝑚 + 𝑅ℎ · ℎ + 𝑅, (4)

where 𝑅CSP𝑐 and 𝑅CSP𝑚 can be thought of as carbon coefficients
per unit of CPU and memory, respectively, and 𝑅ℎ and 𝑅 as the
per-hour and constant overhead carbon coefficients, respectively.
Treating CFPCSP as the target variable 𝑦 and [𝑄𝑐 , 𝑄𝑚, ℎ] as the
feature vector x, ML-based models can be used to determine the
carbon coefficients. If good models can be fit with small errors,
then the assumption of a single or narrow-ranged coefficient per di-
mension would be validated. Alternatively, clusters of records that
fit a model instance can be analyzed to determine the underlying
cause for the differences in model parameters of the different clus-
ters. Variations may also be analyzed using data gleaned from the
clients, such as time of usage, estimated utilization levels, and type
of workload executed. Such analysis can be used by the TPAs to
improve their CFP estimates. The approach sketched herein is just
an initial step and can be extended to other resources and services.

TheWay Forward. The opportunity and possible role for TPAs in
the space of CPM for multicloud would depend to a large extent on
how energy and carbon emission transparency of cloud and hybrid-
cloud eco-systems evolve. Reverse engineering to determine cloud
operational parameters, such as the one described above, can con-
tinue until there is sufficient transparency. Some ideas on enabling
visibility into cloud energy system that call for virtualizing the en-
tire energy sub-system to extend control to individual applications
for optimizing their emissions have been explored in [4] and [50],
Some other specific calls to action to various stakeholders in the
CPM space that can help carbon-aware deployments in multicloud
are as follows: (1) Development of an open framework to enable
CFP computations and subsequent CFP reduction decisions. Cur-
rently APM tools like Instana collect resource utilization metrics
and compute service-level metrics at very fine granularity. Simi-
larly, resource optimization products like IBM Turbonomic [45, 53]
collect resource utilization metrics and have recently been extended
to tap into power utilization metrics within virtualization platforms
like VMWare VSphere. Such efforts should be extended to a broader
range of hardware devices, platforms, and services, and preferably,
made open source. (2) A common benchmark suite for a variety
of benchmark workloads, and their corresponding power and CFP
estimates, can be established for different hardware configurations.
These hardware configurations could vary in CPUs, GPUs, etc., and
storage units. Such a benchmarking mechanism can draw from
SPEC (which includes suites for IaaS Cloud and Power [10], in addi-
tion to the well-known CPU suite); this continues to drive hardware
vendors to build better, efficient, and performant hardware. There
is a need to establish a similar benchmarking system for carbon-
aware computing or incorporate carbon awareness into SPEC that
takes into account both the embodied and operational emissions
to enable carbon vs. compute performance of various CSPs. (3)
Development of mechanisms to seamlessly update the energy and
carbon metering and attribution approaches to maintain currency
and validate the approaches for correctness and consistency.

5 CONCLUSION
Enterprise computing is witnessing several important changes, in-
cluding growing demand for resources, new hardware architectures,
software abstractions, and workload deployment models, along
with the use of renewable/stored energy sources. This conflation is
leading to both a need for and an opportunity to jointly optimize for
CFP via resource optimization, workload placement, and proactive
energy modulation. As discussed, the methodology employed by
CSPs to compute the CFP across services is not transparent. This is
in addition to the coarse-grained nature in time and aggregation
over a large number of services. Therefore, carbon performance
management (CPM) tools and methods are needed at multiple lev-
els to measure and apportion energy consumption, show energy
footprint, translate energy to carbon, and present actionable recom-
mendations to make informed choices and trade-offs. We strongly
believe that CPM should become a first-class discipline that coex-
ists with APM, ARM, and SLM. Manufacturers of hardware (GPUs,
TPUs, AIUs, memory and storage units, network interconnect and
switches), CSPs, and developers of APM and ARM tools need to
work together with a sense of urgency to develop open, transparent
frameworks to achieve both CFP estimation and reduction.
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