
Improving Carbon Emissions of Federated Large Language Model
Inference through Classification of Task-Specificity

Geerd-Dietger Hoffmann
Green Coding Solutions GmbH

Berlin, Germany
didi@green-coding.io

Verena Majuntke
HTW Berlin

Berlin, Germany
verena.majuntke@htw-berlin.de

ABSTRACT
The resource consumption of software and communication infras-
tructure is an increasing concern, particularly with the emergence
of Large Language Models (LLMs). While energy consumption
and carbon emission of LLMs during training have been a focus
in research, the impact of LLM inference which scales with the
number of requests, remains underexplored. In this paper we show
that energy efficiency and carbon emission of LLM inference vary
depending on the model and on the task category, e.g. math, pro-
gramming, general knowledge, with which the model is prompted
and that smaller specialized models can achieve comparable accu-
racy while using less resources. We analyze the differences across 8
open-source LLMs when processing prompts of different task cate-
gories. Our findings lead to a novel approach: Classifying prompts
by using embeddings to route them to the most energy-efficient and
least carbon-intensive LLM in a federation of LLMs while keeping
accuracy high. We validate the effectiveness of our method through
empirical measurements.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Soft-
ware and its engineering → Extra-functional properties; •
Computer systems organization→ Distributed architectures.

KEYWORDS
AI, inference, energy consumption, carbon emission, task-specificity
ACM Reference Format:
Geerd-Dietger Hoffmann and Verena Majuntke. 2024. Improving Carbon
Emissions of Federated Large Language Model Inference through Classi-
fication of Task-Specificity. In Proceedings of 3rd Workshop on Sustainable
Computer Systems (HotCarbon’24). ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Large Language Models (LLM) have recently gained significant at-
tention across industry, research, and civil society sectors. Among
the numerous applications, ChatGPT stands out as a particularly
prominent example. As of April 2024, ChatGPT reported more than
180 million active users, and its website received more than 1.8
billion visits in March 2024 [11]. Despite the rapid advancement
and widespread adoption of artificial intelligence (AI) technologies,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotCarbon’24, July 9, 2024, Santa Cruz, CA
© 2024 Copyright held by the owner/author(s).

there has been little focus on addressing the energy demand and
environmental impact of AI. The energy consumption and conse-
quent environmental impact of AI occur across various phases of
its lifecycle, training, re-training and inference. A strong research
focus has been on the training phase of AI, as the training has
proven to be very energy and resource consuming. For instance,
the training of GPT-3 - a model with 175B parameters, required
1.287 megawatt-hours (MWh) of energy. Considering the carbon
intensity of the electricity grid at the time - 429 grams of CO2
per kilowatt-hour - the training of GPT-3 alone resulted in the
emission of approximately 502 tonnes of CO2 [30]. Furthermore,
the same authors calculated the energy consumption of Machine
Learning at Google for one week of April in 2019, 2020 and 2021.
They found out that each year the proportion of Machine Learning
had a portion of 10-15% of Google’s overall energy consumption
with three-fifth being used for inference [29]. However, the cost
of LLM inference scales with the number of requests a model has
to process. Considering the rapid advancement of AI technology,
inference plays a critical role in the total energy usage and carbon
emissions of generative artificial intelligence.

This paper focuses on reducing the carbon emission for infer-
ence of a set of LLMs. We present an approach that uses machine
learning embedding models to classify a prompt by its task cate-
gory. The prompt is then routed to the most energy-efficient and
least carbon-intensive model within a federation of models. The
approach is based on the finding that generalized models are more
computational intensive and energy-demanding than models that
have been trained for a specific task [22].

The contributions of this paper are threefold: (1) A benchmark
of the energy consumption and carbon emission during inference
of 8 open-source LLMs for different task categories, identifying the
most suitable model for each prompt. (2) A system that classifies
task categories using embeddings to route prompts to the optimal
model for each prompt, based on our benchmarks. (3) Empirical
measurements demonstrating that our approach reduces the energy
consumption and carbon emission of inference across the federation
of LLMs. The results support the use of energy efficient and carbon
reduced task-specific models and a routing component as a future
direction for sustainable AI. It paves the way to a multi model world
in which carbon can be saved through using the optimal model for
each prompt.

2 RELATEDWORK
Prior research focuses on the energy efficiency and carbon foot-
print during the training of neural networks [36], [37], [1], and
[15]. Strubell et al. [36] show that an increase in model accuracy
implies a substantial additional amount of computational resources,

https://orcid.org/0009-0000-8205-136X


HotCarbon’24, July 9, 2024, Santa Cruz, CA Geerd-Dietger Hoffmann and Verena Majuntke

escalating financial costs as well as environmental impact. Sim-
ilarly, Thompson et al. [37] observe that advancements in deep
learning models correlate strongly with increases in computing
power, suggesting that such progress may become environmentally
and economically unsustainable. They also note that energy limita-
tions inherently set an upper bound on the accuracy that can be
achieved. Lasse et al. [1] introduce Carbontracker, a tool designed
to track and predict the carbon footprint during the training phase
of deep learning models. The tool aims to foster the development
of energy-efficient neural networks. Henderson et al. [15] suggest
a framework for real-time tracking of energy consumption and
carbon emissions in reinforcement learning algorithms. Based on
case studies using the framework, strategies for energy and carbon
emission reduction are proposed. In contrast to our approach, the
discussed research focuses mainly on the training phase.

Broader approaches have been presented in [20], [6], [12], and
[14]. Lenherr et al. [20] show that the focus on enhancing deep
learning accuracy comes with unconsidered economic and envi-
ronmental cost. The work introduces recognition and training ef-
ficiency as new metrics aiming at balancing accuracy, complexity
and energy consumption of a model. Schwartz et al. [34] argue for
resource efficiency as a critical evaluation criterion alongside accu-
racy. They propose incorporating a "price tag" on the development
life cycle of deep learning models to establish baselines for further
improvements. Bomasani et al. [6] assess the societal impacts of
foundation models, including economic and environmental effects.
Another comprehensive approach has been taken by Eilam et al.
[12]. In their work they introduce unified AI sustainability metrics
as an extension to data center sustainability metrics which have
been introduced by Gandhi et al. [14]. They apply their approach
to artificial intelligence covering the whole life cycle allowing for a
holistic assessment of the sustainability of a model.

Related work in the inference phase has been conducted in [7],
[26], [33], [22], [12], [33], and [8]. Canziani et al. [7] identify a
gap in the consideration of resource utilization. They analyze four-
teen deep neural networks (DNNs) from the ImageNet challenge,
focusing on practical metrics such as inference time and power con-
sumption. Their findings reveal a hyperbolic relationship between
accuracy and inference time, suggesting that gains in accuracy re-
quire disproportionately more computation time. In [33] Samsi et
al. analyze the inference performance and inference computational
cost of the LLM LLaMA using NVIDIA V100 & A100 as recent GPUs
and Alpaca and GSM8K as datasets for their benchmarks. Further-
more, Molom-Ochir and Shenoy [26] evaluate the performance
and energy efficiency of popular GPUs used in both embedded
and desktop environments. They discover that larger devices do
not necessarily equate to greater energy efficiency. Based on their
findings, they propose a recommendation algorithm to aid system
designers in selecting the most appropriate hardware for specific
needs. Luccioni et al. [22] also focus on the inference phase. They
show that inference in more generalized models requires order
of magnitudes more energy and thus emissions than inference in
models which have been tailored for specific tasks even when the
number of model parameters is controlled. In [8], the authors exam-
ine the carbon emissions and energy use of generative AI inference,
using ChatGPT as use case. They develop a workload model for
geographic shifting and evaluate different routing strategies like

CarbonMin directing requests to low-carbon energy models. Their
approach reduces emissions while maintaining user experience.
The presented approach is similar to our approach as it routes re-
quests to models which run on low-carbon energy. In contrast, to
[8] however, we classify requests into task categories and route
them to models which have proven to be energy efficient which
also implicitly results in less carbon emissions when processing the
task category. A combination of both approaches for even more
carbon emission optimization should be analyzed.

3 BACKGROUND
In this section we provide the theoretical information for our con-
tribution. We first introduce LLMs and TSLLMs before we address
the topic of energy consumption and carbon emission.

3.1 Large Language Models
A language model is a statistical probability distribution over se-
quences of words in a natural language [35]. These models are
essential for natural language tasks such as text understanding and
generation complying to linguistic rules. The advent of transformer-
based architectures [38] has significantly enhanced the capabilities
of language models, leading to large language models (LLMs). A
LLM is a large-scale, pre-trained statistical language model based on
neural networks. LLMs have evolved to perform complex reasoning
and mimic human intelligence, establishing them as foundational
components for general-purpose AI [25]. A LLM typically consists
of hundreds of millions to billions of parameters and is trained on
extremely big datasets. The data usually covers various content in
order to equip the LLM with some level of generality and versatil-
ity. Additionally, an LLM can be tailored for specific tasks through
fine-tuning on task-specific training data. In the following we refer
to such a LLM as task-specific LLM (TSLLM).

To make use of the capabilities of a LLM, a textual input is pro-
vided guiding the ouput of the model. The textual input is referred
to as a prompt. A prompt requires some sort of instructions or
questions directed at the model. Moreover, a prompt may com-
prise more complex structures like a specification in which way
the model should structure the output. Carefully crafted prompts
enable users to fine-tune the output of a model without adapting
the model itself. Engineering a "good" prompt has shown to be a
key factor of using the full potential of a LLM [23]. In [32], the
authors identified 29 different prompting techniques as of February
2024. One of the earliest forms of prompting techniques is the so
called zero-shot prompting [31]. A zero-shot prompt is a prompt
that causes a model to generate a response without having been
specifically trained on the task. The prompt is designed without any
examples and the model composes the response based on content
and patterns it has learned.

3.2 Energy Consumption and Carbon Emission
Software systems cause emissions when they are executed on re-
spective hardware. The emissions stem from the energy that is used
by the hardware (direct emissions) and the manufacturing and dis-
posal of the hardware (embodied emissions). For the measurements
in this paper we use the ISO standard Software Carbon Intensity



Improving Carbon Emissions of Federated Large Language Model Inference through Classification of Task-Specificity HotCarbon’24, July 9, 2024, Santa Cruz, CA

(SCI) [18] developed by the Green Software Foundation1. In order
to calculate and report an SCI score, the specification requires to
define 1) The bounds of the software system to be measured, 2) the
scale in terms of a functional unit over which the system scales,
and 3) a definition of the quantification method.
The SCI score is a rate, carbon emissions per unit 𝑅 which is calcu-
ated according to the following formula:

𝑆𝐶𝐼 = ((𝐸 ∗ 𝐼 ) + (𝑀)) 𝑝𝑒𝑟 𝑅 (1)

where 𝐸∗𝐼 is the operational energy consumed by a software system
consisting of 𝐸 - the energy (𝑘𝑊ℎ) consumed for a functional
unit 𝑅 , and 𝐼 the region-specific carbon intensity (𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ).
Furthermore,𝑀 denotes the embodied carbon.

4 APPROACH
As previously stated, the focus of our research is to improve the
energy consumption and carbon emission of LLM inference. Our
approach has been inspired by the finding that larger generalized
models are more energy-demanding than smaller models that have
been trained for a specific task [22]. Thus, we introduce a federation
of task-specific LLMs (TSLLMs) and employ a classifier component
which is placed upstream of the set of models. The classifier assesses
each incoming prompt with respect to already known prompts, with
their SCI score, to determine the TSLLM within the federation that
has been identified to be optimal for energy and carbon efficiency
for that specific task, i.e. has the lowest SCI-score. The prompt is
then routed to the selected TSLLM. An overview of our approach is

Figure 1: Using a Classifier with TSLLM federation

depicted in Figure 1. The figure shows the federation consisting of
a Classifier and a set of TSLLMs ({𝑇𝑆𝐿𝐿𝑀1,𝑇𝑆𝐿𝐿𝑀2, ...,𝑇𝑆𝐿𝐿𝑀𝑛}).
The Classifier serves as an interface for using entities. It classifies
the task category of a prompt, forwards it to a selected model and
returns the response of the model to the using entity. If a new
model is added to the federation, the model is evaluated and its
information is added to the Classifier. Analogously, the Classifier
deletes the information, if a model is removed from the federation.

4.1 Model and Data Set Selection
To show the validity of our approach, we conducted a series of mea-
surements described in Section 5. For our evaluation, we selected 8
pre-trained, open-source TSLLMs which are shown in Table 1. The
table shows the names of the selected TSLLMs, the architecture it
is based on, the number of parameters, the size of the model and its

1https://greensoftware.foundation

task specialization. We selected the models based on our current
memory constraints.

Table 1: Open-source TSLLMs

Name Arch Param. Size Task spec.
codellama llama 7B 3.8GB code
gemma gemma 9B 5.0GB general
llama3 llama 8B 4.7GB general
mistral llama 7B 4.1GB general

stablelm2 stablelm 2B 983MB translation
sqlcoder llama 7B 4.1GB sql
tinyllama llama 1B 638MB general

wizard-math llama 7B 4.1GB math

As specific task categories we identified the following: (1) Python
code generation, (2) mathematical understanding, (3) natural lan-
guage question answering, (4) SQL generation, and (5) language
translation. These 5 task categories were chosen because models
specifically trained for these task categories were available, ensur-
ing an elaborate and relevant experimental setup. For datasets with
respective prompts, we choseMBPP [2] for Python code generation,
GSM8K [10] for mathematical understanding, WebQuestions [4] for
natural language question answering, PetSQL[21] for SQL genera-
tion , and Test Sets [3] for language translation. The datasets were
selected from https://paperswithcode.com. Our selection criteria
was (1) the number of papers referencing the dataset, (2) the task
category, and (3) the format in which the data is provided.

4.2 Classification and Training
To implement the Classifier, we created an embedding. An AI em-
bedding is a low-dimensional representation of discrete variables,
commonly used in natural language processing (NLP) to capture
semantic meanings. Embeddings have shown strong performance
in text classification [19]. Foundational studies like [5] and [24]
introduced Word2Vec and FastText, which reduce computational
requirements while maintaining high accuracy in NLP tasks. For
our approach we use the mxbai-embed-large embedding model
[27] for embedding creation. All known prompts are precomputed
and saved in the chroma [9] database. Chroma is an open source
embedding database which implements fast retrieval of closest em-
beddings using Squared L2 𝑑 =

∑ (𝐴𝑖 − 𝐵𝑖 )2. When a new prompt
is encountered, an new embedding is created. Subsequently, the
database is queried to get the closest known prompt that has been
measured. The Classifier then checks the mapping for the TSLLM
with the lowest SCI-score and passes the prompt to this TSLLM. In
addition to SCI-scores, we manually checked for the correctness of
answers and discarded every TSLLM that gave incorrect answers.
To train the Classifier, the embedding model was fed with the first
50 prompts of each dataset, i.e. category. Moreover, each model was
evaluated for those prompts. We then checked for correctness and
discarded any incorrect results as we will discuss in Section 6.

5 MEASUREMENTS
We utilized a dedicated measurement machine equipped with an
Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz, 32GB of memory,



HotCarbon’24, July 9, 2024, Santa Cruz, CA Geerd-Dietger Hoffmann and Verena Majuntke

Table 2: Evaluation model accuracy

Code Math Natural Questions SQL Translation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

codellama 0.17 0.27 0.17 0.14 0.21 0.01 0.37 0.73 0.30 0.41 0.24 0.01 0.02 0.02 0.03 0.01
gemma 0.59 0.56 0.37 0.72 0.45 0.27 0.04 0.02 0.03 0.03 0.51 0.29 0.28 0.13 0.03 0.04 0.03 0.04 0.03
llama3 0.46 0.38 0.21 0.16 0.17 0.19 0.17 0.27 0.07 0.22 0.01 0.25 0.11 0.29 0.26 0.19 0.28 0.05 0.05 0.04 0.15 0.17
mistral 0.40 0.36 0.40 0.28 0.55 0.33 0.71 0.25 0.10 0.14 0.08 0.06 0.14 0.29 0.20 0.20 0.27 0.02 0.02 0.02 0.03 0.10
stablelm2 0.10 0.10 0.08 0.09 0.10 0.12 0.12 0.14 0.15 0.20 0.08 0.10 0.18 0.05 0.08 0.05 0.04 0.05
sqlcoder 0.09 0.04 0.06
tinyllama 0.08 0.03 0.04 0.03 0.02 0.00 0.06 0.05 0.05 0.01 0.01
wizard 0.38 0.58 0.43 0.54 0.58 0.41 0.31 0.28 0.26 0.32 0.30 0.01 0.17 0.38 0.32 0.35 0.56 0.39 0.30 0.44 0.08 0.36 0.07 0.17

and an MSI GeForce GTX 1080 Armor 8G OC 8 GB. The machine
ran a specialized version of Linux, NOP Linux [16] (a modified
Ubuntu 22.04), optimized for energy measurement by removing all
unnecessary cron jobs and services that could cause interrupts.

The operational software included only a daemon that queried a
Redis queue for new jobs, loaded the specified model into memory,
executed the query, and stored the results back into Redis. To col-
lect metrics, we implemented a script that periodically read values
and logged them to a file in tmpfs. We set the sampling period to
99 milliseconds to prevent lockstep sampling while minimizing
data collection overhead. The interval was carefully chosen to en-
sure minimal interference from idle time, with the benchmarking
overhead maintained at under 1% [17].

We employed a specialized device to measure the PSU energy
consumption of the entire machine. Initially, we attempted to use a
PowerSpy2 device manufactured by ALCIOM, however, its reliance
on Bluetooth resulted in inaccurate timing and incorrect readings.
Additionally, the device frequently crashed when using the logging
feature through its official program. Consequently, we switched to
using the MCP39F511N chip by Microchip, paired with the Power
Monitor Demonstration Board (ADM00706), accessed via USB, to
obtain accurate PSU readings. For CPU energy measurements, we
utilized Intel RAPL, while GPU energy and temperature data was
collected using NVIDIA SMI.

We used the Ollama [28] helper program for model invocation.
To ensure reproducibility, we fixed the seed in the models. Our
initial findings suggest that further research is required to explore
how model parameters such as temperature, context window size,
and tail-free sampling impact energy consumption. During mea-
surements, we observed a progressive increase in energy usage
per query, attributable to rising GPU temperatures which esca-
lated energy demands. Consequently, we introduced a cooldown
period whenever CPU or GPU temperatures exceeded 60 degrees
to mitigate this effect.

To determine the SCI-scores across all combinations of mod-
els and datasets we define the respective TSLMM as bounds and
the complete process of answering a prompt excluding the model
preparation like loading into memory or building up caches as scale.
We exclude model loading as this would normally already be in
memory in a standard setup. We need to use the same machine
with no other components interfering to get comparable readings.
As quantification method we use lab-based measurements.
For measuring our approach, we define the Classifier plus network

traffic plus the inference of the selected TSLMM as bounds. As scale
we specify the complete process of classifying and routing a prompt
and its response plus the inference of the selected TSLMM. Similarly,
we used lab-based measurements as quantification method.

For both setups we set the location carbon intensity to a fixed
value of 385 CO2eq/kWh. The value was retrieved from electrici-
tymaps.com as the average value in Germany for 2022 [13] to get
comparable results. Note that the fixed value does not reflect the
exact intensity when the measurements were conducted.

We calculated the embodied carbon as described in [39] as public
data is not provided by manufacturers. For the other hardware com-
ponents, data from https://datavizta.boavizta.org/serversimpact
was used and multiplied by 2 to account for the GPU creation.
We assumed a constant of 574100 for the gCO2 emitted for produc-
tion. While the value is not correct in absolute terms it has a stable
bias. Thus, the impact of manufacturing and disposing the machine
is evenly attributed to each model and expresses the embodied
carbon in the SCI.

6 EVALUATION
As described in Section 4 we queried each model with 50 prompts
per category to obtain SCI-scores for each prompt and each category.
Initially we also accounted for total energy consumption of a given
prompt. As models do not have a constant draw this resulted in
values that do not represent the actual usage of models. Especially
larger models showed extensive wait times in execution in which
energy consumption would be very low.

Table 3: Average SCI per Category and Model for correct
answers

code math questions sql translation

codellama 0.1815 0.2260 0.0942 0.2757 0.0328
gemma 0.4726 0.2052 0.0560 0.2846 0.0519
llama3 0.2973 0.1491 0.1830 0.2839 0.0902
mistral 0.3156 0.2573 0.1371 0.2176 0.0420
stablelm2 0.0837 0.0545 0.1164 0.1615 0.0708
sqlcoder 0.1490 0.2469 0.2773 0.1015 0.1910
tinyllama 0.0445 0.0269 0.0163 0.0558 0.0093
wizard 0.5052 0.3218 0.3054 0.4107 0.1720



Improving Carbon Emissions of Federated Large Language Model Inference through Classification of Task-Specificity HotCarbon’24, July 9, 2024, Santa Cruz, CA

Because of this, we opted for the SCI approach as the inclusion
of execution time adds utilization to the evaluation factor.

The results are shown in Table 3. The values indicate that there
are great differences regarding SCI-scores for different categories.
tinyllama, for instance, outperforms every other model with respect
to its SCI-score. However, in some categories, the accuracy - which
we discuss subsequently - of tinyllama is rather low. The results
also reveal that models have different SCI-scores when processing
prompts of certain task categories. For instance, translation tasks
consume far less resources than coding tasks.

Table 4: Accuracy by Category and Model

code math questions sql translation

codellama 94% 62% 62% 80% 84%
gemma 98% 72% 64% 72% 88%
llama3 100% 88% 84% 82% 96%
mistral 92% 80% 84% 86% 96%
stablelm2 96% 42% 60% 50% 72%
sqlcoder 44% 48% 24% 60% 20%
tinyllama 92% 56% 36% 28% 54%
wizard 94% 82% 74% 84% 92%

However, the results need to be seen in the context of accuracy.
The accuracy of each model for each category is shown in Table 4.
To assess, if the models returned the right answer, we manually la-
beled all 2000 responses as the responses were rather complex. The
numbers show some positive and some negative highlights. For in-
stance, llama3 has an accuracy of 100% for code-related prompts. In
contrast, sqlcoder has a low accuracy answering prompts regarding
natural questions while tinyllama has a low accuracy for sql-related
prompts. And while codellama has initially been selected for code
related questions, it is outperformed in this category by llama3. The
results also suggest that larger, more general models return correct
answers in different categories but that smaller models perform
equally well in specific domains. tinyllama performs equally well
to mistral in the coding category but uses an average SCI of 0.0445
per prompt in comparison to 0.3156.

Table 5: Sum SCI all prompts

code math questions sql translation

codellama 9.4944 11.8264 4.4774 14.0644 1.6367
gemma 23.6249 10.3582 2.5469 13.6006 2.5755
llama3 14.8684 7.5321 8.9135 15.0997 4.4717
mistral 16.1504 12.8255 7.0139 12.0887 2.0640
stablelm2 4.2502 2.5880 5.1270 8.1730 3.7212
sqlcoder 5.3165 6.8574 9.3100 5.1250 5.6436
tinyllama 2.1936 1.1683 0.8012 2.6111 0.4889
wizard 25.6002 14.3143 12.9625 21.4763 8.4628

In addition to the 250 training and benchmarking prompts, we
also measured 5 validation prompts per category. These were not
included in the training set for the classification. The classifier de-
termined the ideal model for the unseen prompt in that the answer

is correct and has the lowest SCI. Table 2 shows the results of our
measurements. If a model did not return a correct answer, the table
shows a blank spot. The results indicate, that models show differ-
ences in accuracy depending on the category. tinyllama for example
has no correct answer in the math category but performs very well
in coding. Thus, it is important to select the correct model to get a
correct answer. While the larger general models perform on a wider
spectrum the smaller specialized models are very category-specific
and thus require a prior classification of prompts.

Table 5 shows the SCI-score sum of inference costs for all 8
models and 5x50 prompts. The results also underpin the difference
of the models when processing prompts of a certain category even
if the answers are not correct. Selecting a model which is prompted
with all categories is the current state of the art. In order to increase
the accuracy, models become larger but at the price of energy and
carbon emissions.

As the process involves running the embedding model we also
measured this step. The embedding model is very energy efficient.
Getting the embeddings for 250 prompts took 15 (2+ of 10 runs)
seconds and the total training had an SCI of 0.7282 including the
addition of all embeddings to the chroma database.

2 4 6 8 10
SCI Score

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

codellama

gemma

llama3
mistral

stablelm2

sqlcoder

tinyllama

wizard

classifier

Figure 2: Model SCI-score sum and accuracy

Figure 2 comprises the measurements results for the single model
approach and our federated approach with classifier. The x-axis
represents the sum of SCI-scores of all 25 evaluation prompts in-
cluding incorrect answers. The y-axis denotes the accuracy of each
model for the 25 prompts. The values show that models like llama3
have a high accuracy of 88% but also a high SCI-score sum of 4.6814.
In comparison, our classifier approach, denoted as 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 has a
SCI-score sum of 2.0807 while accuracy is at 72%. This result is sec-
ond best with respect to overall SCI-score sums and in the middle
with respect to accuracy. However, we assume that the accuracy
can be increased when the classifier is being trained on more data.

7 CONCLUSION AND FUTUREWORK
LLM inference significantly impacts the energy consumption and
carbon emissions throughout the LLM lifecycle, as costs scale with
the number of requests. In this paper, we presented a novel ap-
proach incorporating a classifier component upstream of a model
federation, classifying prompts to route them to the models with



HotCarbon’24, July 9, 2024, Santa Cruz, CA Geerd-Dietger Hoffmann and Verena Majuntke

the lowest carbon intensity (SCI) for the task category. While model
training is very costly in terms of carbon emissions, inference also
has a vast impact and needs optimization. We introduced a frame-
work to measure model inference of known open source models
showing that models perform differently when processing prompts
from specific task categories. We demonstrated that our approach
effectively reduces energy and thus carbon usage, using an em-
bedding model to classify and route unseen prompts with minimal
overhead. We found out that smaller models can adequately handle
many task categories, and even when a prompt requires reprocess-
ing, there are overall energy savings. For our research we limited
the scope to 5 clearly defined task categories with corresponding
models. However, the evaluation shows that it is possible to use
the classifier component to choose the model which is best suited
based on the prompt itself.

In our initial evaluationswe utilized simple question-answer data.
Currently, we are analyzing prompts that aremore complex and lead
to the generation of larger content. There is strong indication that
models change in their resource usage when the context window
becomes larger, which is the case in the chat like experience that is
now present. Furthermore, we are researching how changing the
model while in a chat can save resources overall. In this approach
a more energy efficient model is initially chosen and if the answer
is not sufficient the whole conversation is switched to a larger
model. Moreover, we are analyzing how energy consumption and
carbon emissions are influenced using confidence of models for
prompt routing. Further work should also explore how modern
chat interactions can be optimized for resource usage, to enhance
the efficiency in practical applications and evaluate the approach
in context of large dominant LLMs.

REFERENCES
[1] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Car-

bontracker: Tracking and Predicting the Carbon Footprint of Training Deep
Learning Models. arXiv:2007.03051 [cs.CY]

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. MBPP (Mostly Basic Python Programming). https:
//github.com/google-research/google-research/tree/master/mbpp

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. MBPP (Mostly Basic Python Programming). https:
//www.statmt.org/wmt18/translation-task.html#download

[4] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang.
2013. WebQuestions. https://worksheets.codalab.org/worksheets/
0xba659fe363cb46e7a505c5b6a774dc8a

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146. https://doi.org/10.1162/tacl_a_
00051

[6] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,

Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2022. On the Opportunities
and Risks of Foundation Models. arXiv:2108.07258 [cs.LG]

[7] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016. An Analysis of
Deep Neural Network Models for Practical Applications. CoRR abs/1605.07678
(2016). arXiv:1605.07678 http://arxiv.org/abs/1605.07678

[8] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and
Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative AI
Inference (today and in 2035). In Proceedings of the 2nd Workshop on Sustainable
Computer Systems (Boston, MA, USA) (HotCarbon ’23). Association for Computing
Machinery, New York, NY, USA, Article 11, 7 pages. https://doi.org/10.1145/
3604930.3605705

[9] Chroma 2023. chroma. Chroma. https://www.trychroma.com/
[10] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,

Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. GSM8K. https://github.com/
openai/grade-school-math

[11] Fabio Duarte. 2024. Number of ChatGPT Users. https://explodingtopics.com/
blog/chatgpt-users Accessed: 2024-04-29.

[12] Tamar Eilam, Pedro Bello-Maldonado, Bishwaranjan Bhattacharjee, Carlos Costa,
Eun Kyung Lee, andAsser Tantawi. 2023. Towards aMethodology and Framework
for AI Sustainability Metrics. In Proceedings of the 2nd Workshop on Sustainable
Computer Systems (Boston, MA, USA) (HotCarbon ’23). Association for Computing
Machinery, New York, NY, USA, Article 13, 7 pages. https://doi.org/10.1145/
3604930.3605715

[13] Electricity Maps 2001. Electricity Maps. Retrieved April 8th, 2024 from https:
//app.electricitymaps.com/

[14] Anshul Gandhi, Dongyoon Lee, Zhenhua Liu, Shuai Mu, Erez Zadok, Kanad
Ghose, Kartik Gopalan, Yu David Liu, Syed Rafiul Hussain, and Patrick Mcdaniel.
2023. Metrics for Sustainability in Data Centers. SIGENERGY Energy Inform. Rev.
3, 3 (oct 2023), 40–46. https://doi.org/10.1145/3630614.3630622

[15] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and
Joelle Pineau. 2020. Towards the systematic reporting of the energy and carbon
footprints of machine learning. J. Mach. Learn. Res. 21, 1, Article 248 (jan 2020),
43 pages.

[16] Geerd-Dietger Hoffmann. 2023. NOP Linux. Green Coding Solutions GmbH,
Berlin, Germany. https://www.green-coding.io/blog/nop-linux/

[17] Geerd-Dietger Hoffmann. 2023. Overhead of Measurement Providers.
https://docs.green-coding.io/docs/measuring/metric-providers/overhead-
of-measurement-providers/

[18] ISO/IEC 21031:2024 2024. Information technology - Software Carbon Intensity
(SCI) specification.

[19] Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R. Cole,
Kai Hui, Michael Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai Meher Karthik
Duddu, Gustavo Hernandez Abrego, Weiqiang Shi, Nithi Gupta, Aditya Kusupati,
Prateek Jain, Siddhartha Reddy Jonnalagadda, Ming-Wei Chang, and Iftekhar
Naim. 2024. Gecko: Versatile Text Embeddings Distilled from Large Language
Models. arXiv:2403.20327 [cs.CL] https://arxiv.org/abs/2403.20327

[20] Nicola Lenherr, René Pawlitzek, and Bruno Michel. 2021. New universal sustain-
ability metrics to assess edge intelligence. Sustainable Computing: Informatics
and Systems 31 (2021), 100580. https://doi.org/10.1016/j.suscom.2021.100580

[21] Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang, Guoqing Du, Xiaoru Hu,
Bin Zhang, Yuxiao Ye, Ziyue Li, Rui Zhao, and Hangyu Mao. 2021. PetSQL.
https://github.com/zhshlii/petsql

[22] Alexandra Sasha Luccioni, Yacine Jernite, and Emma Strubell. 2023.
Power Hungry Processing: Watts Driving the Cost of AI Deployment?
arXiv:2311.16863 [cs.LG]

[23] Ggaliwango Marvin, Nakayiza Hellen Raudha, Daudi Jjingo, and Joyce
Nakatumba-Nabende. 2024. Prompt Engineering in Large Language Models. 387–
402. https://doi.org/10.1007/978-981-99-7962-2_30

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs.CL]
https://arxiv.org/abs/1301.3781

[25] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large Language Models: A
Survey. arXiv:2402.06196 [cs.CL]

[26] Tergel Molom-Ochir and Rohan Shenoy. 2021. Energy and Cost Considerations
for GPU Accelerated AI Inference Workloads. In 2021 IEEE MIT Undergraduate
Research Technology Conference (URTC). 1–5. https://doi.org/10.1109/URTC54388.
2021.9701614

[27] mixedbread.ai 2024. mxbai-embed-large-v1. mixedbread.ai. https://www.
mixedbread.ai/blog/mxbai-embed-large-v1

[28] Ollama 2024. Ollama. https://ollama.com/

https://arxiv.org/abs/2007.03051
https://github.com/google-research/google-research/tree/master/mbpp
https://github.com/google-research/google-research/tree/master/mbpp
https://www.statmt.org/wmt18/translation-task.html#download
https://www.statmt.org/wmt18/translation-task.html#download
https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a
https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
https://doi.org/10.1145/3604930.3605705
https://doi.org/10.1145/3604930.3605705
https://www.trychroma.com/
https://github.com/openai/grade-school-math
https://github.com/openai/grade-school-math
https://explodingtopics.com/blog/chatgpt-users
https://explodingtopics.com/blog/chatgpt-users
https://doi.org/10.1145/3604930.3605715
https://doi.org/10.1145/3604930.3605715
https://app.electricitymaps.com/
https://app.electricitymaps.com/
https://doi.org/10.1145/3630614.3630622
https://www.green-coding.io/blog/nop-linux/
https://docs.green-coding.io/docs/measuring/metric-providers/overhead-of-measurement-providers/
https://docs.green-coding.io/docs/measuring/metric-providers/overhead-of-measurement-providers/
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://doi.org/10.1016/j.suscom.2021.100580
https://github.com/zhshlii/petsql
https://arxiv.org/abs/2311.16863
https://doi.org/10.1007/978-981-99-7962-2_30
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2402.06196
https://doi.org/10.1109/URTC54388.2021.9701614
https://doi.org/10.1109/URTC54388.2021.9701614
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://ollama.com/


Improving Carbon Emissions of Federated Large Language Model Inference through Classification of Task-Specificity HotCarbon’24, July 9, 2024, Santa Cruz, CA

[29] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. 2022. The
Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink.
Computer 55, 7 (2022), 18–28. https://doi.org/10.1109/MC.2022.3148714

[30] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. arXiv:2104.10350 [cs.LG]

[31] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[32] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A Systematic Survey of Prompt Engineering in Large
Language Models: Techniques and Applications. arXiv:2402.07927 [cs.AI]

[33] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas,
Michael Jones, William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gade-
pally. 2023. From Words to Watts: Benchmarking the Energy Costs of Large Lan-
guage Model Inference. 1–9. https://doi.org/10.1109/HPEC58863.2023.10363447

[34] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2019. Green AI.
arXiv:1907.10597 [cs.CY]

[35] C. E. Shannon. 1951. Prediction and entropy of printed English. The Bell System
Technical Journal 30, 1 (1951), 50–64. https://doi.org/10.1002/j.1538-7305.1951.

tb01366.x
[36] Emma Strubell, Ananya Ganesh, and Andrew Mccallum. 2019. Energy and Policy

Considerations for Deep Learning in NLP. 3645–3650. https://doi.org/10.18653/
v1/P19-1355

[37] Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso.
2022. The Computational Limits of Deep Learning. arXiv:2007.05558 [cs.LG]

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[39] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai,
Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore
Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra
Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, and Kim
Hazelwood. 2022. Sustainable AI: Environmental Implications, Challenges and
Opportunities. arXiv:2111.00364 [cs.LG]

accepted 13 June 2024

https://doi.org/10.1109/MC.2022.3148714
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2402.07927
https://doi.org/10.1109/HPEC58863.2023.10363447
https://arxiv.org/abs/1907.10597
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/2111.00364

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Large Language Models
	3.2 Energy Consumption and Carbon Emission

	4 Approach
	4.1 Model and Data Set Selection
	4.2 Classification and Training

	5 Measurements
	6 Evaluation
	7 Conclusion and Future Work
	References

