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ABSTRACT
With the rise of generative AI, sustainability concerns have intensi-

fied due to the computational demands and the need for advanced

GPUs. While recent studies have quantified carbon emissions from

data centers, a gap exists in fully understanding the lifecycle emis-

sions of generative models and hardware systems.

This paper introduces refined carbon models for CPUs and GPUs,

aiming to optimize the design space during the machine learning

lifecycle, particularly for multi-GPU systems in generative infer-

ence. We present a parameterized embodied carbon model that

emphasizes the substantial impact of general-purpose CPUs (2x

for lifetime). Our findings suggest model-dependent strategies for

carbon-efficient generative inference, such as optimized batching,

model sharding, and parallelization. These strategies, combined

together appropriately, can achieve a 17% improvement in carbon

footprint without negligible degradation in throughput. Addition-

ally, we propose an asymmetric lifetime extension strategy for

GPUs to amortize CPU embodied carbon, which enhances energy

efficiency despite higher initial carbon costs. This approach high-

lights the potential for sustainable practices in AI, emphasizing the

importance of lifecycle-aware optimization in the era of resource-

intensive generative models.
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1 INTRODUCTION
Data center development has fueled the rapid advancement of tech-

nologies like artificial intelligence, which come with high energy

costs and corresponding carbon footprints [12, 37, 48]. With the

new wave of generative AI, sustainability has become a paramount

concern [21, 39, 40]. Due to increasing user traffic and diverse ap-

plications, generative models incur high computational costs and

require new GPUs with large memory capacities during inference

to process long contexts.

To understand the environmental impact of computing platforms,

researchers have begun to study the life cycle emissions of comput-

ing. Across the life cycle, researchers have identified the majority
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of emissions are attributed to one of two categories: embodied or

operational [24, 50]. Embodied carbon refers to the total amount of

greenhouse gas emissions (GHG) associated with the production of

materials and equipment used in a system [22]. Operational carbon
owes to the electricity consumed by hyperscalar data centers. To

better understand the impact of both embodied and operational

carbon, recent efforts have developed tools and methodologies

to quantify the end-to-end carbon footprint of computing hard-

ware [23, 24, 27, 31, 32, 40, 42]. Crucially, the research has observed

the need to co-optimize across the lifecycle of hardware to balance

embodied and operational emissions in data centers.

As generative AI models are rapidly evolving and consuming

significant portions of data center infrastructure capacity, there is a

dire need to understand the environmental footprint of AI. Further-

more, the high compute, memory, and storage requirements levied

by generative models demand specialized solutions to quantify and

optimize the embodied and operational carbon from a full-stack,

life-cycle-aware characterization and optimization perspective. Re-

cent studies studies [29, 49] have quantified the carbon footprint for

LLM inference across different models and hardware systems. How-

ever, due to the lack of fine-grained carbon modeling, there remain

significant opportunities for model-system-hardware co-design to

enable a sustainable ML life cycle.

This paper aims to investigatemodel-system-hardware co-design

opportunities to enable sustainable generative AI inference in hy-

perscalar datacenters. We begin by proposing an extensible and

parameterized model to estimate the operational and embodied

carbon footprint of full systems, including general purpose CPUs,

memory, storage, and specialized AI engines such as GPU’s. Using

the model, we identify unique opportunities to optimize end-to-end

generative AI systems for both operational and embodied carbon

for single- and multi-GPU systems. Central to our insights is the

observation that while specialized AI engines account for the lion’s

hare of power consumption in generative AI, general purpose CPUs

incur non-trivial embodied carbon overheads. Based on this obser-

vation, we further examine trade-offs for design space optimization

during the ML lifecycle, especially for single- or multi-GPU systems

used in generative inference.

We summarize the main contributions as follows:

• Parameterized carbon models for AI platforms: We develop

a parameterized carbon model to estimate the operational and

embodied carbon of AI systems. The model demonstrates that

lifecycle optimization requires asymmetrically optimizing spe-

cialized AI engines (e.g., GPUs) for operational use and host

processors (e.g., CPUs) for embodied carbon.

• Carbon-efficient generative inference strategies: Different
batching, model sharding, and parallelization strategies open

performance and carbon efficiency trade-offs, allowing appli-

cation developers to optimize carbon-efficiency by up to 17%.



HotCarbon’24, July 9, 2024, Santa Cruz, CA Yueying (Lisa) Li, Omer Graif, and Udit Gupta

Furthermore, at iso-accuracy, we find sparse Mixture-of-Expert

models to be more carbon efficient than dense Llama models by

leveraging additional parallelism opportunities [19, 34, 46].

• Asymmetric lifetime extension strategy: By refreshing GPUs
more frequently than CPUs, we can improve energy efficiency at

an upfront embodied carbon cost.

2 MOTIVATION

Table 1: Examples of cloud GPU servers used in Figure 1.
(Unit: Memory: GB, TDP: W)
Comp. GPU CPU DRAM SSD CPU TDP

AWS T4x1 Cascade Lake 16 125 205

AWS T4x4 Cascade Lake 256 900 205

AWS T4x8 Cascade Lake 384 1800 205

𝜆GPU A6000
×{1,2,4}

AMD EPYC 7713 100
×{1,2,4}

200
×{1,2,5}

225

Azure A100
×{1,2,4}

AMD EPYC 7v12 220
×{1,2,4}

960
×{1,2,4}

225

𝜆GPU A100x8 AMD EPYC 7713 1800 21990 225

With the increasing prevalence of AI, optimizing energy and

resource efficiency has become a more prominent research area [33,

51]. Most research has focused on efficient AI algorithms, such as

dynamic batch sizes [33, 51] and sparsity [36, 44, 53], as well as

system runtime optimization, including scheduling and dynamic

voltage frequency scaling [15]. While reducing the computation

and memory required for AI training or inference can save opera-

tional carbon, attention must also be given to embodied carbon for

achieving sustainability.

Figure 1: Embodied carbon (top) and Thermal design
power (TDP) (bottom) with different cloud GPU offerings
sampled from Azure (A100 SXM 80G with 1,2,4 cards), AWS
(T4), and LambdaCloud (A6000, A100x8) [1, 3, 47]. 1

According to Apple [13], the commodity hardware manufactur-

ing (a major part of embodied carbon) accounts for 74% of the total

carbon footprint, while the operational use of all its devices con-

tributes 19%. Similarly, for data center AI hardware, it is essential

to quantify the full-system and AI life-cycle carbon footprint [49].

However, there is a notable lack of fine-grained carbon models

necessary to answer the questions and explore design trade-offs.

1
T4 instances are usually used for inference, A6000 and A100 are both for infer-

ence and training. GH200 with 96 GB HBM3 is an academic training platform for

reference. Instances with more GPUs are also equipped with more memory and

SSD, increasing embodied carbon. The embodied carbon calculation is shown in the

methodology sections.

Furthermore, host CPU processors, which significantly impact the

embodied carbon footprint, have not received as much focus.
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Figure 2: Carbon footprint of A100x4 GPU server per-
second LLM inference application when powered by com-
monly used energy sources in US with different carbon
intensity.

In Figure 1, within a typical cloud GPU server, we calculated the

CPU and GPU carbon footprint sample from the configuration of

the cluster servers and the cloud inference servers. We observed

that CPU dominates embodied carbon (top), whereas GPU
dominates thermal design power (bottom), which can serve as

a proxy for operational carbon assuming a similar utilization profile.

The trend is likely to continue given the TDP trends between CPU

and GPU in Figure 3 and the clean energy adoption in Figure 2.
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Figure 3: Thermal design power (TDP) trend for CPU and
GPU averaged if multiple CPU options are present. CPU is
almost constant across generations [45].

The asymmetric carbon distribution between CPU and GPU can

be attributed to at least two factors:

1) GPUs have become a significant source of operational carbon

emissions due to their rapidly increasing thermal design power

(TDP) and high idle power consumption. 2) CPUs, along with asso-

ciated components such as SSDs, main memory, and motherboards,

represent a substantial source of embodied carbon emissions, par-

ticularly in larger GPU servers. Additionally, the bit density of

CPU memory technology is not advancing at the same rate as GPU

high-bandwidth memory (HBM). It is because, for cost reasons, old

technology nodes have worse carbon efficiency per unit of storage.

These findings underscore the need for distinct optimization

strategies for CPUs and GPUs: In regions with low carbon intensity

(CI), it is crucial to extend the lifespan of CPUs to reduce the amor-

tized embodied carbon footprint. Conversely, in high-CI regions,

the focus should be on enhancing GPU utilization or decreasing

the time and energy required to complete equivalent workloads.

Furthermore, implementing different hardware refresh cycles for

CPUs and GPUs is necessary. This approach, combined with more

granular recycling practices for machine learning inference servers,

can help minimize the overall carbon impact of these systems.
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3 METHODOLOGY
In this section, we first discussed the limitations of the existing

work and then proposed our carbon modeling methods.

3.1 Limitation of Past Modeling Techniques
Life Cycle Assessment (LCA) is a tool for global and multi-criteria

evaluation of environmental impacts [8, 9]. This standardizedmethod

makes it possible to measure the quantifiable effects of products or

services on the environment. However, for AI inference workloads,

it is more important to understand the implications of different hard-

ware (GPU, TPU, CPU) involved in carbon footprint (CF). There are

many past efforts [23, 29] which try to come up with models and

methodologies to address the lack of supply chain carbon footprint

data, however, none are fine-grained enough to account for the

different configurations under multi-GPU setup.

Besides, there is a void in fine-grained modeling of different

memory technology nodes for GPUs, which significantly impacts

the embodied carbon footprint. Last but not least, the peripheral

components for cooling or power delivery are also not considered

in the past models, which is essential for higher-end GPUs. For

example, in ACT, GPU embodied carbon being modeled is only 78%

of all the embodied carbon components [22, 29].

3.2 Embodied Carbon Modeling

𝐶𝐹𝑒𝑚𝑏,𝑐𝑝𝑢 =
𝑇

𝐿𝑇
(𝑁𝑟𝐾𝑟 +

DRAM, PWB, PDN, Fan, Storage, Die,Chasis∑︁
𝑘

𝐶𝐹𝑘 )

𝐶𝐹𝑒𝑚𝑏,𝑔𝑝𝑢 =
𝑇

𝐿𝑇
(𝑁𝑟𝐾𝑟 +

SoC,PCB,VRAM,PDN,PCB,Con.,Cooling∑︁
𝑘

𝐶𝐹𝑘 )

The embodied carbon footprint (CF) is attributed to a combina-

tion of components such as DRAM, PCB, SSD, and the CPU die

itself. For GPU, it can be attributed to SoC, Power Delivery Network

(PDN), Cooling (Heat sink), etc. We take the inference servers’ specs

in Table 1 and decompose the analysis into different components in

the following section (Figure 4): Here 𝑁𝑟𝐾𝑟 denotes packing carbon

footprint, ad 𝐿𝑇 shows the lifetime, which we take as 3-5 years. 𝑇

is the execution time of the task.

3.2.1 SSD. We first study the LCA report [10, 13, 17, 25]. We base

our analysis on the Dell R740 Report. The Dell PowerEdge R740

is a server that integrates accelerator cards, storage and computa-

tional resources in a 2U, 2-socket platform (i.e. 2 rack units). In our

calculation, we get the per GB SSD carbon footprint and scale it

according to the platform specs:

𝐶𝐹𝑆𝑆𝐷/𝐺𝐵 =
3378.944

8 ∗ 3.84 ∗ 1000 = 0.10999 (𝑘𝑔𝐶𝑂2𝑒/𝐺𝐵)

Total Storage CF = 0.10999𝑆𝑆𝐷𝐺𝐵

3.2.2 Mainboard Printed Circuit Board (PCB). The mainboard in

the LCA report was estimated to be 1925 square centimeters in area,

and we scaled the numbers accordingly. In our calculation, we used

the breakdown but scaled the numbers according to different PCB

sizes, etc. In SCARIF [29], the numbers are not scaled, so it results

in a very large CPU carbon footprint.

Mainboard CF = 175.8 (𝑘𝑔𝐶𝑂2𝑒) PCB area = 1925 (𝑐𝑚2)
𝐶𝐹𝑃𝐶𝐵/𝑐𝑚2 = 175.8 ∗ 62% ∗ 0.85/1925 = 0.048 (𝑘𝑔𝐶𝑂2𝑒/𝑐𝑚2)

Total PCB CF = 0.048 ×𝐴𝑟𝑒𝑎𝑃𝐶𝐵

3.2.3 Die. We use the ACT and iMeC tool [20, 23] and the area of

the chip and process node to approximate the 𝐶𝐹𝐷𝑖𝑒 .

3.2.4 Peripheral Printed Wiring Board (PWB) Components. It is es-
sential to quantify the peripheral PWB’s carbon footprint (without

RAM, including PCB, HDD controller, riser card, etc.). We calculate

the CF numbers based on the area scaling to different components

of the PWB. The detailed breakdown of selected components is

shown below:

Ethernet card CF = 102.3 ∗ 0.048 = 4.91 (𝑘𝑔𝐶𝑂2𝑒)
HDD Controller = 107.0 ∗ 0.048 = 5.136 (𝑘𝑔𝐶𝑂2𝑒)

3.2.5 Memory. The methodology for calculating DRAM / VRAM

CF is based on the different technology nodes’ bit densities, and

combined with the emission given a certain wafer area and its

manufacturing technology (assuming constant yield) [30].

An example calculation for VRAM of GH200 (assuming yield as

0.9, Wafer CF for HBM3e as 700 from TechInsight Analysis [30]):

To project the bit density for newer GPUs like the HBM3e used

in GH200 not shown in the datasheet, we extrapolate its memory

technology 1𝛽 as 1𝛼 / scaling factor = 0.315/0.882 = 0.4.

Wafer_Mem = Size × Bit Density

8

= 3675.62 (𝐺𝐵)

𝐶𝐹𝐻𝐵𝑀3𝑒/𝐺𝐵 =
Wafer CF

Yield ×Wafer_Mem

= 0.24 (𝑘𝑔𝐶𝑂2𝑒/𝐺𝐵)

Total RAM CF = 𝐶𝐹𝐻𝐵𝑀3𝑒/𝐺𝐵 ×Mem

Below, we give the formula for calculating general memory car-

bon footprints using bit density summarized from various company

reports. We show the final memory carbon footprint per GB in

Figure 5. The equation below shows some common numbers for

GPU offerings with AMD ECPY CPUs: T4, A100, and GH200
2
.

𝐶𝐹𝑀𝑒𝑚 =


0.24 ×Mem if using HBM3e,3,2e, 1𝛽

0.28 ×Mem if using HBM2, 1𝛼

0.29 ×Mem if using DDR4/LPDDR5, 1𝑧

0.62 ×Mem if using GDDR6, 2𝑦

3.2.6 Power Delivery Network (PDN). We scale the PDN carbon

footprint from the LCA report with board-level TDP of the system

of interest. For example, for A6000 GPU system,

𝐶𝐹𝑃𝐷𝑁 =
Design_TDP_GPU

LCA_TDP

× LCA_PDN_CF

= 22.89 (𝑘𝑔𝐶𝑂2𝑒)

3.2.7 Fans / Cooling. We scale the cooling carbon footprint with

chip-level TDP. For example, for A6000

𝐶𝐹𝐶𝑜𝑜𝑙𝑖𝑛𝑔 =
Design_TDP_GPU

LCA_TDP

× LCA_HeatSink_CF

= 23.63 (𝑘𝑔𝐶𝑂2𝑒)
2
We focus on DDR4/LPDDR5 CPUs after 2016.
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Figure 4: Proposed carbon modeling framework with more fine-grained embodied carbon estimation on memory, storage
and power related components.
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Figure 5: Left: Bit density trends for different DRAM tech-
nology nodes summarized from company reports. The
1𝛽 data is extrapolated. Right: Carbon footprint per GB
trends.

3.3 Operational Carbon Modeling
There are several ways to quantify the operational carbon foot-

print, including using runtime energy measurements for different

components and scaling them with the infrastructure’s carbon in-

tensity and PUE or making estimates based on hardware utilization

counters accessible on the cloud.

The operational carbon comes from both the memory and com-

puting of the GPU and CPU. Moreover, the power related to the

memory controller, network device, and network components is

nontrivial even if the device is in an idle state. Extensive research

has been conducted on power modeling across various scales—from

data centers and servers to virtual machines and applications. No-

tably, Leila Ismail’s study provides a comparative evaluation of

software-based power models for data center servers, exploring

both linear and non-linear approaches that utilize mathematical or

machine learning methods [28].

We take a hybrid method for estimating the operation carbon.

For servers with direct RAPL [16] access, we use energy measure-

ment tools such as Zeus [51]. Otherwise, we use stress-ng to add

different CPU and memory (VM) loads to the system and use psutil

and intel-rapl to measure the instant power and other hardware

counters like utilization [4, 5]. Since there is no easy way to add

a linearly scaled GPU power stressor, we focus on characterizing

the power with respect to the different CPUs and try to extrapolate

common principles.

One critical insight from these studies is that power models

relying solely on CPU utilization to estimate server power con-

sumption are prone to high error rates. More accurate models also

incorporate memory usage. Additionally, incorporating a constant

to account for other significant components, such as storage and

network, could enhance model accuracy.

After we collect data with different stressors (as shown in Fig-

ure 6, for CPU stressor), we can fit the related constants in Equa-

tion 1. Here MFU is the model flops utilization.

𝐶𝐹𝑜𝑝 = 𝐸 ×𝐶𝐼𝑢𝑠𝑒 or 𝐶𝐼𝑢𝑠𝑒 × 𝑃 × 𝑡
= 𝐶𝐼𝑢𝑠𝑒𝑡 × [(𝛼𝑈𝑡𝑖𝑙𝑐 + 𝛽𝑈𝑡𝑖𝑙𝑚𝑒𝑚 + 𝑃𝑐

𝑖𝑑𝑙𝑒
)

+(𝑎𝑈𝑡𝑖𝑙𝑔 (𝛾 + 𝑐MFU) + 𝑏𝑈𝑡𝑖𝑙𝑣𝑟𝑎𝑚 + 𝑃𝑔
𝑖𝑑𝑙𝑒

)] (1)

where we choose

𝐶𝐼𝑢𝑠𝑒 =

{
35 (𝑔𝐶𝑂2𝑒/𝑘𝑊ℎ) if renewable energy
380 (𝑔𝐶𝑂2𝑒/𝑘𝑊ℎ) otherwise
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Figure 6: In order to fit the constants for the equation and
estimate the power consumption of cloud instances, we
not only measure the instance power with different CPU
utilization [11] but also measure the power with different
memory utilization.

4 CHARACTERIZATION AND ANALYSIS
In Figure 7, we visualize the CPU and GPU embodied carbon com-

ponents (only manufacturing-related carbon) for the following

two types of servers used for AI training and inference: Stan-

dard_NC96ads_A100_v4 with 2 A100 GPUs and 80 GB HBM2e and

Standard_NC4as_T4_v3 T4 inference server with 16GB GDDR6.

For inference platforms like T4, much of the carbon footprint

is on the CPU’s mainboard (top row). This motivates us to recycle

and reuse the CPU components better.

The percentage breakdown (Figure 7) shows that the storage

and DRAM is a huge carbon sink for the A100 platforms’ CPUs.

A noticeable difference is in the storage for T4. Since the instance

allocates a very small amount of storage, the carbon footprint is

not a huge concern.

For the A100 GPU platform, the cooling part’s carbon footprint

is higher due to the higher TDP and higher vertical density of the

3D memory technology with HBM2e [6, 7]. This motivates us to

think about design and runtime techniques for improving the power

proportionality of the memory sub-system.

5 TOWARDS CARBON-EFFICIENT ML
SERVING

In this section, we discuss and analyze several techniques used

to optimize system throughput and efficiency for LM serving and
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Figure 7: Azure T4 and A100 GPU carbon footprint break-
down (absolute values in kgCO2e for the total lifetime on
the right. Cooling and PDN compose a big part for A100
GPU, and Mainboard and storage is a big part of CPU car-
bon.).

demonstrate the tradeoffs and large design spaces when also opti-

mizing for carbon efficiency.

5.1 Batching for Carbon-aware Offline
Inference

For best-effort generative offline inference, batching techniques are

often used to increase the utilization of the GPU system [14, 33, 52].

The larger the batch size, the higher the efficiency or utilization

(until it is bandwidth-bounded by the roofline model [38]). We will

start to examine the same design question from a holistic carbon

perspective: What is the optimal number of requests in a batch?
We use the vLLM for inference and Zeus for energy measure-

ment [2] and study the EDP (Energy-delay-product), CDP (Carbon-

delay-product) and CEP (Carbon-energy-product) for each request

(task) with different batching strategies for various models. The

lower the number, the more carbon-friendly the system is. We fix

the workload generation length and prompt length as the default

in the vLLM offline inference benchmark and aggregate the results

over three random seeds.

Observation: In Figure 8, the optimal CDP/CEP/EDP is achieved

at different batch sizes (8-512) for different models
3
. This is because

of the high idle power draw for GPUs; the larger the batch size,

the better the compute and energy efficiency until it reaches the

memory-bound region of the roofline model. Optimizing traditional

metrics like EDP doesn’t equate to optimizing for CEP. However,

since embodied carbon is proportional to the delay, the curve is

convex for CEP. Implication: It is important to select the right

batch size to optimize for carbon efficiency, alongside latency and

throughput goals.

5.2 Choice of Model Parallelism
There are at least three types of model parallelism: model tensor

parallelism, expert parallelism, and model pipeline parallelism, in

addition to data parallelism. Tensor parallelism (TP) is used for

parallelizing computations within a tensor, while pipeline paral-

lelism is used for computations between layers. Expert parallelism

3
We scale the CEP by a common factor for all models and systems for easier

representation.
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Figure 8: EDP (Energy-delay-product), CDP (Carbon-delay-
product), CEP (Carbon-energy-product) and traditional
metrics like total energy (per task) and delay vs. Batch
(8-512): different models have different optimal batching
points. For smaller models, optimizing for EDP, CDP gives
a relatively small batch size, and the optimal batch size
grows larger as the model becomes more complex.

(EP) applies to Mixture-of-expert (MoE) models - breaking large

feed-forward layers computation (FFN) into smaller ones. For large

language models containing large-scale matrix multiplications, TP

and EP can help reduce the memory footprint per GPU and re-

duce latency. However, it also introduces new challenges, such as

synchronization and communication overhead. We ask: Does the
model or batch size play a role in the choice of parallelism strategy
for carbon- or energy-efficient inference?
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Figure 9: Latency vs Energy with different batch sizes un-
der the same setup as in vLLM [33] for offline inference.
The size of the circles/triangles is proportional to the log of
batch size (4-512).
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Figure 10: Latency vs Embodied Carbon. TP is better for
MoE and Llama from a Carbon perspective because TP
amortized the high CPU carbon footprint.

Observation 1: In Figure 9, we used both parallelization (TP=2)

and a non-parallelized deployment (No-TP) strategy for various

models. MoE architecture usually requires more model weight

parameters but fewer activated parameters compared with iso-

accuracy dense models [41]. It’s worth noting that QWen-MoE [46]
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has 2.7B active parameters during inference for batch size equaling

1; however, as the batch size grows, the number of activated experts

also increases for a single batch, increasing the delay for commu-

nication due to load imbalance. QWen has a better model quality

than Llama-7B but has a comparative energy and carbon profile,

especially under larger batch sizes for offline inference. Hence, MoE

architecture is more carbon-friendly under iso-accuracy model vari-

ants.

Observation 2: From Figure 9 and 10 left, for smaller models, No-

TP is preferred at all batch sizes for energy/carbon-efficiency and

latency. This is because the compute intensity for GEMMoperations

is small, and the overhead of communication overshadows the

benefit of parallelization. However, there is a trade-off for larger

models like Llama and MoE (middle and right). TP is preferred for

latency, although the win is small (under 8% most of the time);

No-TP is preferred for energy, and the gain is large (55% at best). TP

is also preferred for embodied carbon (17% at best). Because MoE

architecture’s load imbalance issue can be partly mitigated with

the sub-expert partition, and the bigger the batch size, the more

carbon efficiency gain or latency improvement TP can bring. We

also ran JetMoE [43] to consider almost iso-accuracy with Llama,

and the carbon efficiency gain is 19%.

Implication 1: It’s more carbon-friendly to use MoE compared

with dense models. It’s also more embodied-carbon-friendly to use

TP under larger models, although operational carbon or energy can

be worse. Implication 2: For datacenter regions with cleaner en-

ergy sources, TP is preferred for larger models for carbon, whereas

non-TP is preferred for regions with coal supply (Figure 2).

5.3 Optimize GPU Operational Carbon with
Model Sharding for Online Serving

Figure 11: Illustration on model parallel decisions. Two
models can either be sharded horizontally (A) or vertically
(B) across two GPUs. Left is preferred for carbon.

Model sharding (or statistical multiplexing) is a common tech-

nique to improve the utilization or latency of multi-GPU serving

systems [35]. For example, we can multiplex two models on two

GPUs with the same CPU host (Figure 11). Since CPUs are mostly

used for request scheduling, tokenization, and continuous batching,

it can help reduce the embodied carbon when sharing CPUs for

different models.

Table 2: Comparison for model sharding strategies

TP Lat (ms) 𝑃𝐶 (W) 𝑃𝐺 (W) Energy (J) 𝐶𝐹𝑜𝑝 𝐶𝐹𝑒𝑚𝑏

No (B) 111.23 129.02 240.5 41102.53 4.206 1.11

Yes (A) 127.12 136.75 167.34 29907.643 3.057 1.14

In an online serving setting, we generate requests based on the

ShareGPT dataset to two different models (M1, M2 as Mistral in

Figure 11). The QPS is set to the same as 2, 4, and 8 requests/second

at Poisson arrival. We study the different placement strategies for

models sharing the same CPU (Table 2). The operational carbons are

3.057 and 4.206 (gCO2e), respectively, on average for full inference

on 200 requests. It is worth noting that (A) has a longer TPOT

(time per output token) (degradation by 14%), but improves the

operational carbon by around 30%. We defer how the burstiness

of the workloads and model multiplexing beyond TP=2 impact the

optimal parallelism strategy for future work.

Observation: Tensor parallelism (A) improves energy efficiency

at a slight throughput cost (due to extra communication overhead).

Implication: We can optimize for energy by interleaving mod-

els together on different GPUs horizontally rather than vertically.

The exact sweet spot would depend on hardware configuration

(bandwidth, peak FLOPS) and model characteristics.

5.4 Amortize CPU Embodied Carbon
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Figure 12: GFlops per Watt trend on different GPU and
floating point formats. Energy efficiency doubles almost
every 3 years [18].

For estimation of the AI model’s operational carbon scaling with

different hardware updates, we refer to the trend for GFLOPS/Watt

of GPUs across generations (Figure 12). Analyzing a dataset of 470

GPUs from 2006–2021 provided by Sun et al, it can be estimated

that FLOPS per watt doubles every 3–4 years on average. This is a

slower rate than the 2-year doubling time of Moore’s law [26, 45].

It means that for the same amount of work for AI inference, the

operational carbon footprint will be reduced by half every 3-4 years

if data center providers constantly refresh their GPU hardware.

Implication: Given the asymmetric improvement in GPU and

CPU power efficiency and DRAM density, we can use CPUs with

fewer cores, put CPUs to a lower frequency state, or extend the life

of CPUs and SSDs. On the other hand, for GPUs, we should replace

them based on the operation energy efficiency requirements and

the embodied carbon footprint accounting models.

6 SUMMARY AND FUTURE DIRECTIONS
Our work offers a framework for quantifying carbon footprints in

AI systems and hardware. By integrating operational and embodied

emissions, we enable optimization of AI sustainability. This work

lays the foundation for carbon-aware models, system and hard-

ware co-design, and eco-conscious hardware refresh strategies. We

call on the research community to build upon this framework, ad-

vancing the frontier of sustainable AI through holistic, quantitative

approaches to environmental impact assessment and mitigation.
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