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ABSTRACT
The enormous growth of AI computing has led to a surging demand
for electricity. To stem the resulting energy cost and environmental
impact, this paper explores opportunities enabled by the increasing
hardware heterogeneity and introduces the concept of Geographi-
cal Server Relocation (GSR). Specifically, GSR physically balances the
available AI servers across geographically distributed data centers
subject to AI computing demand and power capacity constraints
in each location. The key idea of GSR is to relocate older and less
energy-efficient servers to regions with more renewables, better
water efficiencies and/or lower electricity prices. Our case study
demonstrates that, even with modest flexibility of relocation, GSR
can substantially reduce the total operational environmental foot-
prints and operation costs of AI computing. We conclude this paper
by discussing major challenges of GSR, including service migration,
software management, and algorithms.
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1 INTRODUCTION
As we embark on the era of artificial intelligence (AI) characterized
by the widespread adoption of advanced models such as ChatGPT
and MidJourney, the significant energy consumption involved in
training, inference, and fine-tuning these AI models is increasingly
worrisome. For example, training a single large language model
takes millions of GPU hours and consumes electricity in the order
of thousands of megawatt hours [2, 29].

Consequently, concerns regarding the environmental footprints
and energy costs of data centers housing AI servers have garnered
significant attention. A recent estimate conducted by the Interna-
tional Energy Agency projects a sharp increase in the global AI
energy demand, reaching at least ten times the current level and ex-
ceeding the annual electricity consumption of a small country like
Belgium by 2026 [11]. In light of the surging AI demand, there has
been a pressing need to implement cost-efficient and eco-friendly
solutions to ensure a sustainable future for AI development.

Numerous strategies have been pursued to address the huge
electricity cost and environmental impacts of AI computing. For
example, reducing AI model sizes through model compression,
speeding up AI training and inference, and/or adopting GPUs and
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Figure 1: Illustration of potential carbon emission reduction
through GSR by relocating energy-efficient servers to Virginia
and energy-inefficient servers to California.

purpose-built accelerators [8, 16, 17, 21] can yield substantial en-
ergy efficiency improvement. On the other hand, different loca-
tions exhibit significant degrees of geographical heterogeneities
in terms of their electricity prices, average carbon intensities of
the grids, and/or the climate conditions that affect the water ef-
ficiencies. Thus, another line of efforts being extensively studied
involves leveraging the spatial and temporal flexibility inherent
in AI computing workloads [10]. This entails dynamically adjust-
ing the location and timing of AI computing to better align with
periods and locations where low-carbon and/or low-cost energy
sources are available [3, 15]. The emergence of third-party energy
information services, such as offering real-time data on energy’s
carbon intensity at high resolutions, has lowered the barrier for
this approach and made it more viable [1, 7, 9]. Importantly, such
AI workload shifting across different geographical locations has
been increasingly adopted by major technology companies as an
effective enabler for sustainable computing [22].

While the potential of geographically shifting AI computing
workloads has been well-recognized, another complementary knob
— physically moving AI computing servers around geographically
distributed data centers — has remained largely over-looked for
sustainability and cost-saving. We refer to this approach as Geo-
graphical Server Relocation (GSR).

The rationale that motivates our pursuit of GSR comes from the
increasing hardware heterogeneity. Concretely, despite the devel-
opment of more powerful and energy-efficient servers, the high
cost remains a barrier, making it impractical or financially challeng-
ing to replace all the servers with the latest, expensive, and more
energy-efficient AI hardware at once. Instead, partial refreshment
is more common in the data center upgrade lifecycle [23]. This
practice has also been reinforced by the increasing emphasis on
reducing the servers’ embodied environmental footprint during the
manufacturing process [6]. As a result, today’s AI data centers often
feature heterogeneous architecture compositions, comprising a mix
of older and newer AI servers. Therefore, the total environmental
footprints and operational costs of AI computing can be reduced
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by strategically relocating older and less energy-efficient servers to
regions where renewable energy sources are more abundant, water
efficiency is higher, and/or electric prices are lower.

We show an illustrative example in Figure 1 as a thought experi-
ment. Consider two AI data center locations, such as California and
Virginia in Figure 1, labeled as A and B, respectively. Virginia’s car-
bon intensity is roughly three times higher than California’s, based
on their average carbon intensity (around 130g/kWh for California
vs. 369g/kWh for Virginia) in April 2024 according to Electricity
Maps [18]. There are two types of AI servers: normalized perfor-
mance per watt is 10 for newer servers and 1 for older ones. Suppose
that we have two units of AI workloads, equally split between the
two types of servers. In other words, the normalized quantities of
older servers and newer servers are 1 and 1/10, respectively, in each
data center before relocation.

• Before relocation: The total normalized carbon emissions at
both locations is (1/1 + 1/10) ∗ 1 + (1/1 + 1/10) ∗ 3 = 4.4.

• After relocation: In this case, we relocate less energy-efficient
older servers from Virginia to California which has a lower car-
bon intensity. Meanwhile, to meet the pre-relocation AI computing
demand at each location, we relocate the newer servers from Cali-
fornia to Virginia. Thus, the total normalized carbon emissions of
these two locations become (1/1+ 1/1) ∗ 1+ (1/10+ 1/10) ∗ 3 = 2.6,
resulting in ∼ 40.9% reduction in operational carbon emission com-
pared to the pre-relocation level.

Despite the oversimplification of many practical considerations,
the illustrative example above demonstrates a clear potential of
GSR to reduce AI’s surging environmental footprint in light of the
increasing hardware heterogeneity. In this paper, we further for-
malize the problem of GSR and conduct a case study to highlight
the potential reductions in carbon emissions, water consumption,
and electricity costs that GSRmay achieve empirically. Nonetheless,
compared to shifting AI computing workloads around different
locations, GSR presents additional challenges in terms of service
migration, software management, and algorithms, among others.
Thus, to offer a more balanced view, we will highlight these chal-
lenges in this paper, which we hope can shape some interesting
research directions for the community to realize the full potential
of GSR for sustainability and cost saving.

2 OPPORTUNITIES FOR GSR
In this section, we present the emerging opportunities for GSR
enabled by the hardware and geographical heterogeneities.

2.1 Hardware Heterogeneity
Most AI computing workloads run on GPUs nowadays, whose
energy efficiency has increased dramatically in recent years due
to design optimization and architectural advances [20]. Figure 2
shows the normalized performance per watt of data center-grade
GPUs released by Nvidia from 2014 to 2023, demonstrating a more
than 10x improvement in terms of GFLOPS per watt.

Despite the significant improvement, the high upfront costs
compounded by supply chain constraints make it impractical or
financially challenging to replace all the servers with the latest,
expensive, and more energy-efficient AI hardware at once. As a
result, it is a common practice for AI developers to partially refresh
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Figure 2: Normalized ratio of performance (GFLOPS) to power
consumption (Watts) for data center-grade GPUs over the
past 10 years (2014-2023) [20]. The manufacturer-reported
data points are plotted in dots and labeled as “real”. We also
offer three different synthetic curves (i.e., “exponential”, “lin-
ear”, and “sublinear”) for hypothetical studies.

and upgrade their AI server fleet, resulting in a mixture of new and
old AI servers [6, 23]. Further, the improved server reliability and
increasing emphasis on reducing AI servers’ embodied environ-
mental footprint during the manufacturing process has propelled
a growing trend of keeping servers for a longer lifespan before
retirement [6]. More recently, composing servers using retired com-
ponents (e.g., DRAMs and CPUs) has also been proven effective for
cutting servers’ lifecycle carbon footprints.

These practices have led to a significant AI hardware hetero-
geneity in terms of the performance per watt in many data centers.

2.2 Geographical Heterogeneity
To serve users worldwide, AI data centers are located in different
regions, which also exhibit significant geographical heterogeneities.

• Electricity price: There is a significant spatial variation of elec-
tricity prices across different states and countries [3]. For example,
country-wide electricity prices can differ by more than 10x through-
out the world [24].

• Carbon intensity: The regional differences in energy sources
for electricity generation naturally result in significant dispari-
ties in carbon intensities for each kWh of electricity consumption
[18]. Even though technology companies have increasingly adopted
carbon-free energy for powering their global data centers, such
regional differences still persist. For example, 97% of the energy
usage by Google’s data center in Finland is carbon-free, whereas
this number drops to 4-18% for its data centers in Asia [6].

•Water efficiency: In addition to carbon emissions, AI computing
also has a significant water footprint, which has emerged as a
hidden sustainability roadblock [14]. Water efficiency in terms
of water consumption per kWh of IT energy usage, a.k.a., water
usage effectiveness (WUE), also varies significantly across different
locations (e.g., by more than 20x across Microsoft’s global data
center locations). Importantly, a data center with better carbon
efficiency may have worse water efficiency [14]. This necessitates
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AI computing’s water consumption as a separate sustainability
metric to address.

2.3 Opportunities Enabled by Heterogeneity
Many AI training and inference tasks can run a diverse set of GPUs
without necessarily having to use a specific type of GPU. That is, to
meet the same AI computing demand, there exist an increasingly
wider set of AI servers, each with different performances per watt.
On the other hand, geographical heterogeneities mean that even
with the same utilization, the same server can have very different
energy costs and environmental footprints if put in different data
centers. As such, where to place the available AI servers to meet
the demand in each data center becomes an important question.

This motivates our pursuit of GSR to tap into the potential op-
portunities enabled by hardware and geographical heterogeneities
for sustainability and cost saving. For example, as illustrated in
Figure 1, GSR can relocate older and less energy-efficient servers
to regions with more renewables, better water efficiencies and/or
lower electricity prices subject to AI computing demand and power
capacity constraints in each data center.

2.4 Problem Formulation
Suppose that there are 𝑁 data centers and up to 𝑀 types of AI
hardware/servers in each data center with different performances
per watt. We denote the default/current and the new configurations
of AI servers as y = {𝑦𝑖, 𝑗 |𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀} and x = {𝑥𝑖, 𝑗 |𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀},
representing the pre-GSR and the post-GSR quantities of type- 𝑗
servers in each data center 𝑖 , respectively.

The computational capacity of type- 𝑗 AI server in data center 𝑖 is
defined as 𝑓𝑗 (𝑥𝑖, 𝑗 ), which can be measured in terms of GFLOPS or
other metrics that AI developers use for capacity planning purposes.
Given the average utilization, the energy consumption of type- 𝑗 AI
servers in data center 𝑖 is denoted as 𝑒 𝑗 (𝑦𝑖, 𝑗 ). Similarly, we denote
its power consumption as 𝑝 𝑗 (𝑦𝑖, 𝑗 ), which indicates the required
power capacity to support the server deployment.

Operational cost. The operational cost (energy cost, carbon
footprint, water consumption, or a combination of them) is propor-
tional to the total energy consumption of all the AI servers in each
data center. Thus, we use a linear function 𝐻𝑖,𝑐 (

∑𝑀
𝑗=1 𝑒 𝑗 (𝑥𝑖, 𝑗 )) =

𝑞𝑖
∑𝑀

𝑗=1 𝑒 𝑗 (𝑥𝑖, 𝑗 ) to represent the cost of data center 𝑖 , where 𝑞𝑖 is the
average electricity price, carbon intensity, WUE, or a combination.
The coefficient 𝑞𝑖 also absorbs the average power usage effective-
ness (PUE) to account for non-IT energy overheads if applicable.

Relocation cost. GSR introduces server relocation costs, such as
the shipping costs and carbon emission overheads due to logistics
(which are usually small compared to servers’ operational emissions
in the lifecycle). Here, to capture the relocation costs, we use the
difference 𝑑 (x, y) = ∥x − y∥ between pre-GSR configuration x and
post-GSR server configuration y as a proxy measure. Given two
different configurations x and y, the actual relocation cost can be
obtained by optimizing the server relocation schedule (e.g., where
and which servers in a data center should be relocated).

Constraints. We introduce 𝜌𝑖 ∈ [0, 1] to denote the fraction
of AI computing capacity that needs to be retained in data center
𝑖 . When 𝜌𝑖 = 1, we must ensure that the post-GSR and pre-GSR
computational capacities of AI servers are the same; when there is

maximum flexibility at 𝜌𝑖 = 0, we can even shut down data center
𝑖 entirely and relocate all the AI servers to elsewhere, which can
apply to AI developers who rent data center spaces from third-party
colocation providers (e.g., Equinix).

Additionally, we use 𝛾𝑖 ≥ 1 to denote the extra power capacity
available normalized by the pre-GSR usage level in data center 𝑖 .
Typically, data center operators reserve extra capacity to absorb
additional loads and accommodate for future growth. If an AI devel-
oper rents power capacity from a third-party provider, it can have
even more flexibility (i.e., a larger 𝛾𝑖 ). For notational conveniences,
we also absorb physical space constraints into 𝛾𝑖 for data center 𝑖 .

Next, we formalize the problem of GSR as follows:

min
x

𝑁∑︁
𝑖=1

𝐻𝑖,𝑐 (
𝑀∑︁
𝑗=1

𝑒 𝑗 (𝑥𝑖, 𝑗 )) + 𝜇𝑑 · 𝑑 (x, y) (1a)

𝑠 .𝑡 .

𝑀∑︁
𝑗=1

𝑓𝑗 (𝑥𝑖, 𝑗 ) ≥ 𝜌𝑖

𝑀∑︁
𝑗=1

𝑓𝑗 (𝑦𝑖, 𝑗 ), ∀𝑖 ∈ [1, 𝑁 ] (1b)

𝑀∑︁
𝑗=1

𝑝 𝑗 (𝑥𝑖, 𝑗 ) ≤ 𝛾𝑖

𝑀∑︁
𝑗=1

𝑝 𝑗 (𝑦𝑖, 𝑗 ), ∀𝑖 ∈ [1, 𝑁 ] (1c)

𝑁∑︁
𝑖=1

𝑥𝑖, 𝑗 =

𝑁∑︁
𝑖=1

𝑦𝑖, 𝑗 , ∀𝑗 ∈ [1, 𝑀] (1d)

The objective (1a) is a weighted sum of the operational cost and the
relocation cost, with the weight hyperparameter 𝜇𝑑 ≥ 0 denoting
the unit relocation cost. The constraint (1b) specifies the minimum
post-GSR AI computing capacity relative to the pre-GSR level, the
constraint (1c) specifies the power capacity constraint, and the
constraint (1d) means that GSR does not retire any available AI
servers (which is a separate decision beyond the scope of GSR).

Remark. GSR only relocates existing servers that have already
been purchased (or refurbished if re-built from older servers [28]); it
does not decide whether or not to buy new AI hardware, which can
be an interesting future study but is beyond the current scope of
GSR. As such, all the potential benefits of GSR shown in this paper
lie in the operational costs and environmental footprints, rather
than the capital expenses and embodied footprints.

3 CASE STUDY
In this section, we conduct a case study to evaluate the potential
empirical effectiveness of GSR under a synthetic setting based on
the reported GPU energy efficiency over the last 10 years.

3.1 Experimental Setup
We examine a set of 10 geographically-distributed data centers
based Micosoft’s current data center sites [19]. This set comprises
four situated in the United States (Virginia, Georgia, Texas, and
Nevada), four in Europe (Belgium, the Netherlands, Germany, and
Denmark), and two in Asia (Singapore and Japan).

3.1.1 Datasets.

Data center-grade GPU energy efficiency. We utilize the general
information regarding Nvidia GPUs tailored for data center usage
over the past decade (2014-2023) as documented by [20]. Specifically,
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(i) Cost savings (2014-2023)

Figure 3: Carbon emission, water consumption, and electricity cost savings under different𝛾 and 𝜌 assessed by themanufacturer-
reported GPU performance-to-power data.

we consider the performance using the provided GFLOPS (Single-
precision) to measure the computational capacity 𝑓𝑗 , and thermal
design power (TDP) in Watts to gauge the energy consumption
𝑒 𝑗 of each type- 𝑗 AI server. To ensure comparability across the
ten-year timeframe, we normalize performance-to-power ratios by
establishing 2014 as the baseline, setting its value to 1. We show
the normalized performance (GFLOPS) per watt in Figure 2. Based
on the real manufacturer-reported data represented by the dotted
line, we can observe a clear trend of rapid increases in performance
per watt as the year progresses.

Electricity price, WUE, PUE, and carbon intensity. We obtain
yearly average electricity price for each data center location in
Europe and Asia from [12]. For the U.S. data centers, we collect the
electricity prices from their respective ISOs as documented in [25].
In terms of environmental footprint minimization, we primarily fo-
cus on operational carbon emission and water consumption [14, 29].
Specifically, we use the on-site cooling WUE for these 10 data cen-
ters reported by [14]. As for the carbon intensity, we gather yearly

average data across these 10 data center locations for the most
recent years from [18]. We use the annualized average PUE for
each data center based on Microsoft’s most recent disclosure [19].

3.1.2 Default configuration and metric. Because of competitive rea-
sons, there is no precise information in the public domain regarding
the current configuration of AI servers in each data center. Thus,
for the pre-GSR setting, we assume that the AI servers are uniformly
distributed in terms of their power consumption. That is, before
GSR for the latest three years (2021, 2022, 2023), we assume the
same amount of power consumption by AI servers purchased from
each year in each data center. We will also consider other settings
such as non-uniform pre-GSR configurations and longer-time scales
(see Appendix A).

We evaluate the effectiveness of GSR by quantifying the percent-
age of savings in operational electricity costs as well as reductions
in the environmental footprint before and after GSR.
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(b) Water Savings
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(c) Electricity Cost Savings

Figure 4: Carbon emission, water consumption, and electricity cost savings under different 𝛾 and 𝜌 assessed by the manufactuer-
reported GPU performance-to-power data over the last 3 years (2021, 2022, 2023). The idle power of the servers is included.

(a) (b) (c)

Figure 5: Carbon footprint, water consumption, and electric-
ity cost saving tradeoffs under the manufacturer-reported
GPU data over: (a) the latest 3 years (2021, 2022, 2023); (b) the
latest 6 years (2018-2023); (c) the latest 10 years (2014-2023).

3.2 Numerical Results
Our empirical results demonstrate that, even with modest flexibility
of relocation, GSR can dramatically reduce the total environmental
footprints and operational costs compared to the pre-GSR level.

3.2.1 Results for manufacturer-reported data. In Figure 3, we present
the reduction in operational carbon footprint, water consumption,
as well as the electricity cost savings before and after GSR under
various combinations of 𝜌 ∈ [0, 1] and 𝛾 ≥ 1 values, considering
different time frames of GPU performance per watt data. Specifi-
cally, we only minimize the individual cost metric (e.g., electricity
cost) without considering the other metrics or relocation costs (i.e.,
setting 𝜇𝑑 = 0). Thus, the values in Figure 3 represent the maximum
savings for the respective metrics under different 𝜌 and 𝛾 .

As 𝜌 > 0 decreases, GSR can potentially relocate more AI servers
since less AI computing demand needs to be processed in the same
data center after GSR. Likewise, with a larger 𝛾 ≥ 1, the extra power
capacity available for GSR is larger, which enhances the flexibility of
GSR. Therefore, we observe that as the flexibility of GSR increases,
the potential saving becomes significantly larger. Importantly, with
a modest flexibility (e.g., 𝜌 = 0.5 and 𝛾 = 1.5), GSR can roughly
yield 20%, 50+% and 20% savings in terms of the operational carbon
footprint, water consumption, and electricity cost, respectively.

3.2.2 The impact of idle power. Our results in Figure 3 focus on
the dynamic GPU power only. In practice, however, active servers
also have idle power even when they are not processing any AI
workloads. Thus, we now investigate the impact of such idle power
on GSR. Specifically, each modern GPU-based AI servers typically
houses 4-8 GPUs. Considering the peak power consumption of
130W for CPU (e.g., Intel Xeon W-2125 processor) and the typical
power draw of around 5W for a 16GB DDR4 RAM, we add an effec-
tive amortized idle power of 30W to each GPU when calculating
the performance-to-power value.

By using the same pre-GSR configuration as in Figure 3, we show
the cost savings for carbon, water, and electricity while accounting
for idle power in Figure 4. Despite slightly decreased savings, the
carbon, water and electricity cost reductions achieved by GSR are
highly similar to those in Figure 3, emphasizing that the primary
driver for savings comes from the spatial and server heterogeneity.
For example, relocating servers to regions with a lower carbon
footprint can significantly decrease carbon emissions, even with
some idle power consumption added to the servers. Similarly, the
spatial heterogeneity in water efficiency and electricity prices plays
a crucial role in savings for water and electricity cost, respectively.

3.2.3 Carbon vs. water (electricity cost) tradeoffs. Carbon efficiency,
water efficiency, and electricity cost efficiency are three important,
but often conflicting, objectives [13]. For example, California has a
higher water consumption rate due to its drier and hotter climate
than Virginia, but its carbon intensity for electricity generation is
much lower than Virginia’s. Likewise, despite the cleaner energy
sources for electricity generation, the electricity price in California
is higher than that in many other U.S. states.

Thus, we show the tradeoff between carbon emission reduction
vs. water consumption reduction, and carbon emission reduction vs.
electricity cost reduction. Specifically, we minimize the weighted
sum of carbon emission and water consumption/electricity cost,
and vary the weight. The results are shown in Figure 5, where we
set 𝜌 = 0.5, 𝛾 = 1.5 and 𝜇 = 0, based on the manufacturer-reported
GPU performance-to-power data spanning the latest 3 years (2021,
2022, 2023), the latest 6 years (2018-2023), and the latest 10 years
(2014-2023), respectively.

While different metrics may not be perfectly aligned, GSR can still
simultaneously reduce AI’s carbon emission, water consumption,
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and electricity cost, which may not be achievable by geographical
load balancing alone that only shifts workloads across different
data centers [13]. Interestingly, when aggressively minimizing car-
bon emissions, we may end up with a higher electricity cost in
some cases, which corroborates with the prior finding that carbon-
efficient locations may not be cost-effective [4].

Due to space limitations, we defer additional results to Appen-
dix A, including the impact of relocation costs and the results for
synthetic trends of GPU performance per watt.

4 CHALLENGES FOR GSR
While GSR could potentially reduce the total environmental foot-
prints and operational costs, it also creates new challenges.

4.1 Services Impacted by GSR
By consolidating the available hardware as a resource pool, modern
cluster management can easily handle individual server replace-
ment/installation without affecting the running services [27], and
can even handle unexpected data center-wide failures by temporar-
ily relocating all the impacted workloads to other data centers [26].
The physical relocation process in GSR requires unplugging move-
out servers and plugging move-in servers, and also requires spare
server capacity (which typically exists to handle workload varia-
tions and growth) to temporarily process the impacted workloads.
Thus, GSR can be viewed as a planned global-level maintenance
event, which presents additional systems challenges. Alternatively,
one can optimize the server relocation schedule and execute the
relocation decision for one data center after another to minimize
the impacted AI servers as well as the hosted workloads.

4.2 Software and Workloads
GSRmay present several challenges for software that is highly tuned
for specific hardware features. For example, to maintain perfor-
mance in virtualized environments, software runtimes may depend
on hardware isolation mechanisms, such as cache partitioning with
Intel Cache Allocation Technology (CAT). Similarly, certain soft-
ware may rely on vectorization for performance using AVX-512,
while other processors may only support AVX2 extensions. These
variations in hardware features may exist in only certain families of
CPUs, which can present challenges to the software when running
on relocated servers.

Besides software challenges, workloads that run on the relocated
hardwaremay also need to adapt due to differences in cache/memory
hierarchy, processor core type (performance cores vs efficiency
cores), and parallelism available in the processors. This challenge
is already commonly experienced in high-performance computing
(HPC) systems. For example, thousands of man-hours are spent
porting workloads from one HPC system to a new generation of
HPC systems. Due to this, there is a strong focus on portability
to achieve high performance across diverse hardware. To better
support GSR, this focus on software portability needs to be adopted
in cloud environments.

Workload changes may also need to adapt to changing hard-
ware features. For example, older GPUs may not have hardware
features such as tensor cores, or support for system-wide atom-
ics. The absence of tensor cores would require algorithms to fall

back to traditional arithmetic units for computation. System-wide
atomics greatly simplifies the implementation of distributed GPU
algorithms. The absence of system-wide atomics would require
an increased amount of synchronization, leading to programmer
burden and decreased performance.

Nonetheless, these challenges may be less of an issue if the soft-
ware and/or workloads closely tied to specific hardware features can
be relocated together with the associated servers and run elsewhere
(i.e., 𝜌𝑖 < 1 in our formulation (1b)).

4.3 Demand and Hardware Uncertainties
When planning for GSR, we need the projected AI resource demand
as the input for decision optimization. For example, the parameter 𝜌
governing the fractions of AI demand that cannot be relocated needs
to provided for GSR optimization. Additionally, when the future
GPU energy efficiency improves, we might need to relocate some
of the AI servers again, potentially resulting in higher movement
costs. In other words, we need to solve a sequential decision-making
problem with movement costs subject to future uncertainties. This
is commonly referred to as smoothed online optimization which
penalizes frequent changes in decisions [5], and is known to be
challenging even under simplified assumptions. Thus, GSR presents
an interesting online optimization problem, which can be of interest
to the operational research and optimization community.

5 CONCLUDING REMARKS
In this paper, we explore potential opportunities enabled by the
increasing hardware heterogeneity and introduce the novel concept
of GSR. By relocating older and less energy-efficient servers to
regions with more renewables, better water efficiencies and/or less
electricity prices, GSR can substantially reduce the total operational
environmental footprints and operation costs of AI computing. We
also discuss the major challenges of GSR, including service impacted
by GSR, software management, and optimization algorithms.

Being complementary to the well-studied geographic workload
balancing, GSR represents an untapped knob that holds a great
potential to cut AI’s enormous operational energy cost, carbon
emissions, and/or water consumption. The challenges of imple-
menting GSR can potentially define future research directions to
realize the full potential of GSR.
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APPENDIX
A ADDITIONAL NUMERICAL RESULTS
We offer additional numerical results for our case study as follows.

A.1 Impact of 𝜇𝑑
We show in Figure 6 the reduction in environment footprint and
operational cost by varying the weight 𝜇𝑑 for relocation costs to
give different penalties for server relocation. We consider modest
flexibility by fixing 𝜌 = 0.5 and 𝛾 = 1.5. The average hardware
configuration change percentage across data centers before and
after GSR is computed as 1

𝑁

∑
𝑖 (
∑

𝑗 |𝑥𝑖, 𝑗 −𝑦𝑖, 𝑗 |/
∑

𝑗 𝑦𝑖, 𝑗 ). Specifically,
this value inversely correlates with the value of 𝜇, suggesting that
a smaller 𝜇𝑑 ≥ 0 encourages more server relocation and enables
more flexible decisions by GSR. Naturally, from Figure 6, we can see
that larger configuration changes also lead to greater savings.
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Figure 6: Carbon emission, water consumption, and electric-
ity cost savings for different movement cost weight 𝜇𝑑 in GSR.
The 𝑦-axis shows the percentage change of server configura-
tion after applying GSR.

A.2 Synthetic Performance-to-Power Trends
In addition to using the manufacturer-reported GPU data to calcu-
late cost savings achieved by GSR, we also incorporate three differ-
ent synthetic GPU performance-to-power (GFLOPS/Watts) trends
to assess the effectiveness of GSR under various setups. Illustrated
by the solid-line curves in Figure 2, the exponential increasing
rate represents an optimistic estimation, suggesting that the perfor-
mance per watt of data center-grade GPUs will continue to grow
exponentially. In contrast, the linear and sublinear curves project
a more neutral or slightly pessimistic estimation, indicating that
the performance per watt of GPUs may have already reached a
saturation point (perhaps within a few years or at a certain point

in the future). In addition, the sublinear case partially captures the
practical observation that the real performance-to-power curve is
typically lower than manufacturer-reported values.

In Figure 7, we present the results of environmental and elec-
tricity cost savings for these different scenarios, demonstrating
that GSR remains effective across these conditions. Specifically, un-
der the same values of 𝜌 and 𝛾 , the savings are more prominent
in scenarios with exponential GPU performance-to-power trends
compared to linear and sublinear trends. It is noteworthy that as 𝜌
and 𝛾 reach certain values, the savings under different trends are
almost the same, since GSR already relocates most AI servers to the
same data center with the best cost efficiency.

A.3 Different Pre-GSR Server Configurations
In our default setting, we consider the case where the AI servers
are uniformly distributed in terms of their power consumption.
That is, when considering the latest three years (2021, 2022, 2023),
we assume the same amount of power consumption by AI servers
purchased from each year in each data center. Now, we vary this
baseline pre-GSR configuration.We first consider the scenario where
the newer-generation AI servers are dominant. More specifically,
before GSR, the ratio of power consumption by the AI servers in
the three years of (2021, 2022, 2023) is 1:2:3. As illustrated in Figure
8, we can still observe a large savings by GSR in terms of the carbon
emission, water consumption, and electricity cost. Compared to the
uniform setting in our main experiment in Section 3, the savings
achieved by GSR slightly decrease. The reason is that there are
relatively fewer old (or energy-inefficient) AI servers.

Next, we consider the scenario where the older-generation AI
servers are dominant. More specifically, before GSR, the ratio of
power consumption by the AI servers in each data center in the
three years of (2021, 2022, and 2023) is 3:2:1. We show the results in
Figure 9 and see that GSR can still offer substantial savings in terms
of the carbon emission, water consumption, and electricity cost.
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(f) Cost savings (linear)
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(g) Carbon savings (sublinear)
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(h) Water savings (sublinear)
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(i) Cost savings (sublinear)

Figure 7: Carbon emission, water consumption, and electricity cost savings under different 𝛾 and 𝜌 assessed by the synthetic
GPU performance-to-power data over the last 3 years (2021, 2022, 2023).
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(a) Carbon Savings
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(b) Water Savings
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(c) Electricity Cost Savings

Figure 8: Carbon emission, water consumption, and electricity cost savings under different𝛾 and 𝜌 assessed by themanufacturer-
reported GPU performance-to-power data over the last 3 years (2021, 2022, 2023). The pre-GSR ratio of power consumption by
the AI servers in these three years is 1:2:3.
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(a) Carbon Savings
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(b) Water Savings
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(c) Electricity Cost Savings

Figure 9: Carbon emission, water consumption, and electricity cost savings under different𝛾 and 𝜌 assessed by themanufacturer-
reported GPU performance-to-power data over the last 3 years (2021, 2022, 2023). The pre-GSR ratio of power consumption by
the AI servers in these three years is 3:2:1.
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