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ABSTRACT
As computing demand continues to grow, minimizing its environ-
mental impact has become crucial. This paper presents a study
on carbon-aware scheduling algorithms, focusing on reducing car-
bon emissions of delay-tolerant batch workloads. Inspired by the
Follow the Leader strategy, we introduce a simple yet efficient meta-
algorithm, called FTL, that dynamically selects the most efficient
scheduling algorithm based on real-time data and historical per-
formance. Without fine-tuning and parameter optimization, FTL
adapts to variability in job lengths, carbon intensity forecasts, and
regional energy characteristics, consistently outperforming tra-
ditional carbon-aware scheduling algorithms. Through extensive
experiments using real-world data traces, FTL achieves 8.2% and
14% improvement in average carbon footprint reduction over the
closest runner-up algorithm and the carbon-agnostic algorithm,
respectively, demonstrating its efficacy in minimizing carbon emis-
sions across multiple geographical regions.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; • Social and professional topics→ Sustainability.
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1 INTRODUCTION
The demand for computing has increased exponentially, propelling
energy consumption to unprecedented levels [1]. This surge in
energy use not only exacerbates the carbon footprint associated
with electricity generation but also emphasizes the urgent need
for sustainable computing practices. For instance, computing’s car-
bon footprint has increased by 5% from 2015 to 2020 [13]. Among
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various strategies proposed to mitigate these effects, carbon-aware
computing has emerged as a critical research area, where the focus
is on modulating the power consumption of data centers in align-
ment with renewable energy availability and carbon intensity of the
electricity grid. Techniques such as temporal shifting, spatial shift-
ing, resource scaling, and dynamic voltage and frequency scaling
(DVFS) have been explored to minimize carbon emissions [3, 6–
8, 10, 11, 18–20]. This paper focuses on carbon-aware temporal
shifting of delay-tolerant batch workloads (e.g., ML training jobs
and MPI simulations), leveraging the variability in energy’s car-
bon intensity by shifting computations from high- to low-carbon
periods.

The effectiveness of temporal shifting strategies hinges on the
ability of scheduling algorithms to adapt to temporal fluctuations in
carbon intensity. Existing research in this domain has introduced a
variety of algorithms designed to optimize scheduling in response
to these dynamics [10, 11, 15, 18, 20]. However, these algorithms can
perform inconsistently across different operational contexts due
to varying local energy market conditions and the unpredictable
nature of renewable energy sources. This inconsistency presents a
significant challenge: no single configuration of an algorithm, or even
a single algorithm reliably outperforms others in all situations. Each
algorithm’s performance can drastically change with variations in
carbon intensity and job characteristics, making static algorithm
selection strategies suboptimal. We refer to Section 3.2 for detailed
measurement of the performance of different algorithms across
different settings.

Observing that no algorithm is superior to others, in this paper,
and motivated by the emerging topic of data-driven algorithm se-
lection [2, 5, 21], we propose a meta-algorithm, FTL inspired by the
“Follow the Leader” strategy [9] that addresses the variability in
performance of temporal shifting algorithms through an empiri-
cal, data-driven approach. Unlike traditional methods that rely on
static or heuristic-based decision-making, FTL dynamically selects
the most efficient algorithm based on real-time data and histori-
cal performance metrics. It considers various factors, including the
predicted length of jobs, the historical effectiveness of scheduling al-
gorithms within similar operational windows, and carbon intensity
forecasts for specific geographical regions. This approach allows
the scheduler to adaptively choose the most suitable algorithm for
any given situation, enhancing the carbon efficiency of computing
operations.

To develop FTL, we conduct a comprehensive empirical analysis
spanning diverse datasets from multiple geographical regions over
three years (2020-2022). By systematically analyzing the perfor-
mance of various scheduling algorithms across different scenarios,
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we gather insights into their operational efficacy relative to fluctu-
ating carbon intensity levels. This analysis informs the design of
FTL, which uses a decision-making framework to select the optimal
scheduling algorithm based on a comparative assessment of the
historical performance of scheduling algorithms.
Contributions: The main contributions of this paper are as follows.
(1) We conduct a detailed analysis of the carbon reduction of a broad

range of carbon-aware scheduling algorithms, considering var-
ious job characteristics and regions. Our findings underscore
the necessity for an adaptive meta-algorithm that can respond
dynamically to changing conditions.

(2) We introduce a meta-algorithm, FTL, inspired by the “Follow
the Leader” strategy. This algorithm intelligently selects the
optimal scheduling algorithm for each job based on historical
performance data of scheduling algorithms and predicted job
length.

(3) Through comprehensive experiments, we show that FTL consis-
tently surpasses individual carbon-aware scheduling algorithms
in reducing carbon emissions across diverse regions and set-
tings. Specifically, FTL achieves 8.2% and 14% average carbon
reductions over the closest runner-up algorithm and carbon-
agnostic scheduling, respectively.

2 PROBLEM STATEMENT
We introduce the temporal shifting problem as the Online Carbon-
Aware Scheduling (OCS) problem, which entails completing a job
of unknown but bounded total length 𝑐 ∈ [𝑐min, 𝑐max] (where 𝑐min
and 𝑐max are known) while minimizing the carbon emissions of
execution. In this setting, a job arrives at the scheduler without a
known length, and the scheduler must make decisions over a set
time frame, from 𝑡 = 1 to 𝑇 , where 𝑇 represents the service-level
objective (deadline) for the job’s completion.

At each time slot 𝑡 , the scheduler receives the current carbon
intensity, denoted as𝐶𝑡 (e.g., in gCO2eq./kWh), and decides whether
to execute one unit of the job—or any remaining fraction thereof—or
to pause the execution. This decision is represented by the binary
variable 𝑥𝑡 , where 𝑥𝑡 = 1 indicates resuming the job and 𝑥𝑡 = 0
means pausing it. The carbon emissions associated with operating
at time 𝑡 are calculated as𝐶𝑡×𝐸×𝑥𝑡 1, where 𝐸 represents the energy
consumption per unit of time (e.g., in kWh). The job completion
constraint enforces that the job must be completed by the deadline,
i.e.,

∑
𝑡 ∈[𝑇 ] 𝑥𝑡 ≥ 𝑐 . Without knowledge of the remaining job length,

an algorithmmust assume that at any time 𝑖 , there are 𝑐max−𝑤𝑖 units
left to schedule, where𝑤𝑖 represents the completed job units up to
𝑖 . This motivates a compulsory execution strategy when only 𝑇 −
(𝑐max −𝑤𝑖 ) time slots remain to avoid violating the job completion
constraint.

Furthermore, any change in the allocation decision (pause or
resume) between consecutive time steps incurs additional carbon
emissions due to the energy overhead of checkpointing or restoring
to save or retrieve the job’s state, respectively. The overhead of such
operations depends on the frequency of checkpoint and restore
actions and the energy cost of a single operation. These operations
are influenced by the size of the job’s state as discussed in [17]. The

1If a job is completed before utilizing the entire time unit, we proportionally
account for the fractional carbon consumption incurred during that period.

extra emissions from a single checkpoint or restore are quantified
as 𝛽 × 𝐸 ×𝐶𝑡 , where 𝛽 is a linear coefficient indicating the fraction
of a time unit consumed by these operations. We assume that 𝛽
is known to the scheduler as it is highly correlated with the job
memory requirements [16].

The offline objective of OCS, summarized below, involves mini-
mizing both execution and switching carbon emissions:

OCS : min
{𝑥𝑡 }𝑡 ∈ [𝑇 ]

∑︁𝑇

𝑡=1
𝐶𝑡 × 𝐸 × 𝑥𝑡︸                  ︷︷                  ︸

Execution carbon emissions

+
∑︁𝑇+1

𝑡=1
𝛽𝐸𝐶𝑡 |𝑥𝑡 − 𝑥𝑡−1 |︸                        ︷︷                        ︸

Switching carbon emissions

(1)

s.t.,
∑︁𝑇

𝑡=1
𝑥𝑡 ≥ 𝑐,︸           ︷︷           ︸

Job completion constraint

∀𝑡 ∈ [𝑇 ] . (2)

In this paper, we focus on the dynamic setting of OCS, where
the actual job length 𝑐 is revealed only upon satisfying the job
completion constraint in Equation 2 (i.e., once the job is finished).

3 DESIGNING FTL META-ALGORITHM
In this section, we first review existing algorithms that tackle the
temporal shifting problem. We then explore the variations in perfor-
mance among these algorithms, highlighting the lack of a definitive
“best algorithm” for all scenarios. Motivated by this finding, we
present FTL, a meta-algorithm inspired by the Follow the Leader
strategy [9]. This approach intelligently selects the most suitable
algorithm for each incoming job based on its predicted length, 𝑐 ,
ensuring optimal performance tailored to the specific conditions of
each job and region.

3.1 Baseline Algorithms
Single Threshold Algorithm: The Single Threshold algorithm,
inspired by theoretical literature on online search [4], employs a
fixed threshold to manage job execution based on carbon intensity.
At each time step 𝑡 , it checks if the carbon intensity is below a
certain threshold. If the intensity is low enough, the job will run; if
not, it will pause. This approach does not assume any knowledge
of job length information and does not consider the overhead of
switching. We denote variations of this algorithm as ST[𝑝], where
𝑝 represents different threshold settings.
Double-Threshold Algorithm: Motivated by the Single
Threshold algorithm’s neglect of switching overhead, Lechow-
icz et al. [11] present a Double-Threshold algorithm for temporal
shifting. This algorithm employs two distinct thresholds—a low
and a high threshold, separated by a margin, 𝛼 . Its operation in-
volves two key conditions: if the job was paused at the previous
time step, the carbon intensity must decrease to at least 𝛼 below
the high threshold, ensuring it is less than or equal to the low
threshold before resuming operation. This strategy ensures that
the emissions incurred from restoring the job are outweighed by
the benefits of operating at a lower carbon intensity. Conversely,
if the job was active at the previous time step, it will continue to
run unless the carbon intensity climbs to at least 𝛼 units above
the low threshold (i.e., the high threshold). This approach helps to
avoid frequent checkpointing/restoring and the associated emis-
sions from repeatedly stopping and restarting the job, minimizing
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Table 1: Number of times an algorithm achieves the lowest
carbon consumption for medium switching overhead tasks
by region (expressed as %)

Algorithm
Region Ontario California AU-NSW France

DT[40, 60] 18.46% 22.38% 24.15% 14.77%
Carbon-Agnostic 9.92% 4.08% 13.00% 20.62%

ST[35] 11.92% 11.00% 9.92% 9.00%
ST[10] 6.54% 5.62% 8.54% 13.00%

DT[40, 80] 7.46% 11.38% 15.46% 15.08%
other algorithms 45.69% 45.54% 28.92% 27.54%

overall carbon consumption. We denote variations of this algorithm
as DT[𝐿,𝐻 ], 𝑠 .𝑡 .𝐻 − 𝐿 = 𝛼 , where 𝐿 and 𝐻 represent different low
and high threshold settings.
WaitAWhilePred: This algorithm utilizes predictions of both job
length, denoted 𝑐 , and carbon intensity. Upon receiving these fore-
casts, it selects the ⌈𝑐⌉ time slots with the lowest predicted carbon
intensities within the given deadline 𝑇 . The job is then scheduled
to execute during these selected slots. The baseline version of this
algorithm, which incorporates knowledge of the actual job length
and carbon intensity forecasts, was proposed in [20].
Carbon-Agnostic: This algorithm employs a greedy approach that
starts executing the job at the time of the submission and contin-
ues uninterrupted until completion, disregarding both current and
future carbon intensities.

Finally, since the actual job length 𝑐 is unknown to the above
algorithms, and to ensure meeting the deadline constraint, algo-
rithms will initiate compulsory execution when the remaining time
slots are less than or equal to the time needed to run the remaining
job length assuming its length is 𝑐max.

3.2 Motivating FTL
The performance of carbon-aware scheduling algorithms is greatly
influenced by factors such as job characteristics, switching over-
head, job length, local environmental conditions (e.g., carbon inten-
sity forecast accuracy), and an electricity grid’s (i.e., a geographical
region) idiosyncratic patterns. For instance, in a setting of jobs
with high switching overhead, algorithms that neglect the switch-
ing overhead (e.g., Single Threshold, WaitAWhilePred) tend to
perform poorly compared to Double-Threshold algorithm that
makes pause/resume decisions based on substantial differences in
carbon intensity. Moreover, job length significantly impacts thresh-
old settings for both Single Threshold and Double-Threshold
algorithms. Shorter jobs benefit from stricter thresholds, which
minimize their carbon footprint during brief periods of very low
carbon intensity. In contrast, longer jobs with stricter thresholds
run the risk of requiring compulsory execution at the deadline
during a high carbon intensity period. Thus, we parametrize the
threshold values to facilitate a more effective carbon awareness.

Additionally, WaitAWhilePred excels when carbon intensity
forecasts and job length prediction are accurate, especially when
switching overhead is minimal. By greedily selecting low-carbon
execution slots, it naturally recovers a nearly optimal solution. Con-
versely, the Carbon-Agnostic algorithm, which executes regard-
less of carbon intensity variations, is advantageous in environments
with minimal changes in carbon intensity, significant forecast er-
rors, or high switching overheads.

Table 1 evaluates the performance of the Single Threshold (ST),
Double-Threshold (DT), Carbon-Agnostic, and WaitAWhilePred
algorithms between 2020 and 2022 for jobs with medium switch-
ing overhead and a 10% error in both carbon intensity and job
length forecasts (details of this experimental setup are explained
in Section 4.1). The table reports the percentage of cases where an
algorithm had the lowest carbon consumption. Focusing on the
performance within any given region, it becomes apparent that
no single algorithm consistently outperforms others. For example,
in AU-NSW, the leading algorithm, DT[40, 60], is only superior in
∼25% of the instances. Moreover, the rankings of algorithms are not
maintained across different regions, highlighting their sensitivity
to local conditions. For instance, in Ontario, DT[40, 60] is the most
effective, achieving 18.46%, whereas, in France, it drops in prefer-
ence, with Carbon-Agnostic leading at 20.62%. We further detail
the performance (carbon savings) implications of these algorithms
in Section 4.2. This performance fluctuation calls for a solution that
can automatically select the best algorithm for each job, ensuring
both superior and consistent carbon emissions reductions.

3.3 FTL: Meta-Algorithm
To address this challenge of diverse performance orderings in Sec-
tion 3.2, we propose FTL, a meta-algorithm inspired by the Follow
the Leader strategy [9] that can match the performance of the best
algorithm in each situation without requiring, e.g., hand tuning
during deployment. The meta-algorithm we propose considers the
historical performance of a full suite of algorithms to dynamically
select the optimal approach for incoming jobs, considering their
switching overhead and predicted job length. Figure 1 describes
the flow of FTL. For each incoming batch job, FTL searches the
database of various baseline algorithm variants, choosing the al-
gorithm that has demonstrated the lowest carbon consumption
for jobs with similar lengths. These comparable jobs are defined
by lengths within the range [𝑐 −𝑚,𝑐 +𝑚]—where𝑚 is a margin
indicating tolerance around the predicted length—and possess iden-
tical switching overhead characteristics. Subsequently, to refine its
selection process and enhance future predictions, FTL simulates
the remaining baseline algorithms against the current job to gauge
their carbon consumption. This new data is then integrated into
the database, ensuring that FTL’s decision-making continuously
evolves and improves with each job, maintaining updated records
of carbon consumption for all considered algorithms. This dynamic
update mechanism ensures that FTL remains adaptive and precise
in optimizing carbon savings across varying job types and settings.

FTL holds the potential to outperform traditional algorithms.
Firstly, it removes the requirement for manual tuning of algorithm
parameters by automatically adjusting to current conditions using
historical data. Secondly, it can adapt to environmental changes,
such as fluctuations in carbon intensity. This adaptability can be
achieved by assigning greater weights in its decision-making pro-
cess to the algorithms’ carbon consumption for more recent jobs,
ensuring that it remains responsive to recent environmental varia-
tions. Finally, it abstracts the relation between the job length, carbon
intensity variations, and the effect of the algorithm by selecting the
algorithm that behaved the best for similar cases.
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Figure 1: FTL Design

4 EXPERIMENTAL RESULTS
In this section, we experimentally evaluate FTL in reducing the car-
bon footprint of interruptible and delay-tolerant batch workloads.

4.1 Experimental Setup
Carbon intensity trace.We use carbon intensity traces from 2020
to 2022 for California, France, Australia-New South Wales (AU-
NSW), Texas, and Ontario from ElectricityMaps [14]. The traces pro-
vide the hourly average intensity values, measured in gCO2eq/kWh.
We select these regions to represent all quartiles of high and low
average carbon intensity and high and low daily variations in car-
bon intensity, expressed as the coefficient of variation [19]. We
assume that carbon intensity forecasts are error-prone, where we
introduce uniform random errors to the data, denoted as𝐶𝐼𝑒𝑟𝑟 that
represents the mean percentage error added to the trace within the
job’s availability. We evaluated all algorithms against 𝐶𝐼𝑒𝑟𝑟 of [5%,
10%, 15%, 20%], which represents typical error reported by carbon
intensity forecasts [12].
Job characteristics. We select 6500 job arrival times from 2020 to
2022, spaced 5 hours apart, to evaluate carbon footprint reduction
across seasons and times of day. Each job arrives independently
with a length, 𝑐 , uniformly sampled within the range of [1, 24]
hours. We assume that the actual job length is unknown to the
scheduler; rather, an inaccurate job length prediction, denoted as
𝑐 , is provided. To incorporate the job length prediction error, we
model a predictor that yields a job length estimate within the range
[𝑐 − 𝐽𝑒𝑟𝑟 × 𝑐 , 𝑐 + 𝐽𝑒𝑟𝑟 × 𝑐], where 𝐽𝑒𝑟𝑟 is the percentage error in job
length predictions. In addition, we assume that jobs are interrupt-
ible, where the job’s state can be checkpointed and restored. We
evaluate the performance by assuming that each job has a check-
point/restore overhead of 1 minute (low), 5 minutes (medium), or
10 minutes (high), and each time unit is 1 hour. These durations rep-
resent the time required to complete a single checkpoint or resume
operation. Finally, we evaluate each algorithm’s carbon savings
across different deadlines (𝑇 ) for each job, including [24, 48, 72, 96]
hours. Unless otherwise mentioned, we use a deadline of 48 hours.
Baseline Algorithms Configuration. To address the diverse char-
acteristics of jobs, such as length and overhead, that significantly
influence the performance of different scheduling algorithms, we
construct a suite of baseline algorithms. These algorithms utilize
predictions of carbon intensity till the deadline 𝑇 .
(1) Single Threshold: We have developed a suite of Single

Threshold (ST) algorithm variants, each defined by a threshold
from percentiles [10, 15, 20, 25, 30, 35, 40] of predicted carbon
intensity for the next𝑇 hours post-job submission. Each variant

is labeled as ST[𝑝], where 𝑝 represents the chosen percentile
threshold.

(2) Double Threshold:We have a set of Double-Threshold(DT) al-
gorithms denoted as DT[𝐿,𝐻 ](𝐻 > 𝐿), where 𝐻 and 𝐿 represent
the high and low thresholds, respectively. The thresholds are
selected from the predicted carbon intensity percentiles for the
next 𝑇 hours as the job is submitted, with 𝐻 ∈ {20, 40, 60, 80}
and 𝐿 ∈ {10, 20, 30, 40} percentiles.

WaitAWhilePred and Carbon-Agnostic are also included as base-
line algorithms. WaitAWhilePred leverages both job length predic-
tion and carbon intensity forecasts to optimize scheduling, whereas
Carbon-Agnostic adopts a strategy of continuous operation ir-
respective of carbon intensity predictions, focusing solely on job
completion.
Evaluation Metric.We assess each algorithm’s performance by
comparing its carbon consumption to the Carbon-Agnostic al-
gorithm. This is quantified using the carbon savings percentage
(CS%): CS%ALG =

(
Agnostic−ALG

Agnostic

)
× 100. This metric measures each

algorithm’s carbon efficiency relative to a baseline where carbon
intensity is disregarded.

4.2 Evaluating FTL
The carbon footprint of scheduling algorithms can vary significantly
based on regional characteristics, particularly the variability and
average carbon intensity. Figure 2 illustrates the top five algorithms
in each region that achieved the highest average carbon savings
percentage across all jobs. In these comparisons, the error margins
for carbon intensity (𝐶𝐼𝑒𝑟𝑟 ) and job length (𝐽𝑒𝑟𝑟 ) predictions are set
to 5% and 10%, respectively. As shown in Figure 2, our proposed FTL
algorithm consistently outperforms other algorithms. For instance,
in Ontario (Figure 2a), FTL achieves an 8% improvement over the
best algorithm, ST[35], while in AU-NSW (Figure 2c), FTL obtain
a 13% improvement over the best algorithm, DT [40, 60]. Finally,
we note that across all regions, FTL consistently outperforms the
closest runner-up, DT [40, 60], by 8.2%, achieving 14% carbon savings
compared to running in a carbon-agnostic manner.

Figure 3 evaluates the algorithms’ performance from a different
perspective, focusing on the 10th percentile carbon savings rather
than the average. The five algorithms with the highest savings
at this percentile are investigated in each region. The negative
savings observed for the algorithms are a result of their compulsory
execution, due to the unknown actual job length. Interestingly,
the algorithms’ relative performance differs when comparing the
average and 10th percentile metrics. For example, in Ontario, the
Single Threshold algorithm, ST [35], is the closest runner-up based
on average carbon savings (Figure 2a) but drops to fourth place
when considering the 10th percentile carbon savings (Figure 3a).
In contrast, FTL not only consistently achieves the highest average
carbon savings across all regions but also exhibits robustness by
consistently ranking in the top three algorithms for 10th percentile
carbon savings. This demonstrates FTL’s ability to perform well in
both typical and more challenging scenarios.
Key Takeaways: FTL outperforms the closest runner-up by 8.2% on
average across all regions, resulting in 14% carbon savings compared
to running in a carbon-agnostic fashion.
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Figure 2: Algorithms’ average carbon savings percentage with 𝐶𝐼𝑒𝑟𝑟 = 5%, 𝐽𝑒𝑟𝑟 = 10%
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Figure 3: Algorithms’ 10th percentile carbon savings percentage with 𝐶𝐼𝑒𝑟𝑟 = 5%, 𝐽𝑒𝑟𝑟 = 10%
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Figure 4: Impact of different parameters on average carbon savings percentage in France

4.3 Evaluating Effect of Parameters on FTL
Effect of Carbon Intensity Forecast Error: The efficacy of al-
gorithms in minimizing carbon emissions relies on the accuracy
of future carbon intensity forecasts within the job’s deadline. For
threshold-based algorithms, these predictions inform the thresh-
old settings, whereas WaitAWhilePred directly uses predictions
to decide when to run or pause the job. However, as the margin
of error in these predictions increases, so does the potential for
suboptimal decision-making, leading to diminished carbon savings.
In Figure 4a, we study the impact of 𝐶𝐼𝑒𝑟𝑟 on the average carbon
savings of algorithms in France, with 𝐽𝑒𝑟𝑟 = 10% over all jobs. We
focus on the top five algorithms with the highest carbon savings at
𝐶𝐼𝑒𝑟𝑟 = 0%, extending the carbon forecast error to 20%. As shown,
although average carbon savings decrease with increases in 𝐶𝐼𝑒𝑟𝑟 ,
FTL maintains its lead, underlining its robustness. In contrast, al-
gorithms such as WaitAWhilePred and DT[20, 60] are significantly
influenced.

Key Takeaways: Rising errors in carbon intensity forecasts typically
impair the performance of carbon-aware scheduling algorithms; how-
ever, FTL’s adaptive design continues to demonstrate superior carbon
savings, showcasing its robustness against prediction uncertainties.
Effect of Switching Overhead: The carbon efficiency of schedul-
ing algorithms is markedly affected by overheads associated with
job checkpointing and restoring. Algorithms that do not account
for switching overhead tend to consume more carbon, especially
when these overheads are significant. As the switching overhead
increases, the carbon savings offered by all algorithms decrease
due to the extra carbon expended during state transitions. In Fig-
ure 4b, we examine the influence of switching overhead in a set-
ting with job length prediction error (𝐽𝑒𝑟𝑟 ) set at 10% and carbon
intensity forecast error (𝐶𝐼𝑒𝑟𝑟 ) at 5%, using France’s carbon inten-
sity trace. The figure presents the top five algorithms that had
the highest carbon savings for low-overhead jobs and plots their
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average carbon savings percentage as the switching overhead in-
creases. Notably, FTL maintains its lead, demonstrating robust car-
bon savings even with heightened switching overhead. Further-
more, the figure shows that as the overhead increases, the Double-
Threshold algorithm, DT[40, 60], surpasses the Single Threshold, ST,
and WaitAWhilePred algorithms.
Key Takeaways: Switching overhead increase limits the possible
carbon savings. Nonetheless, FTL maintains its superior performance.

Effect of Deadline: As the deadline (𝑇 ) increases, it provides the
algorithms with higher flexibility to pause or resume and achieve
higher carbon savings. In Figure 4c, we explore the impact of extend-
ing the deadline (𝑇 ) from 24 to 96 hours in France, with 𝐶𝐼𝑒𝑟𝑟 = 5%
and 𝐽𝑒𝑟𝑟 = 10%. We selected the top five algorithms that demon-
strated the highest carbon savings at 𝑇 = 48 hours. Notably, at
𝑇 = 24 hours, all algorithms exhibit zero carbon savings akin to the
Carbon-Agnostic approach. This occurs because, upon submis-
sion, algorithms are unaware of the actual job length. Thus, they
assume that the maximum possible remaining job time (𝑐max) is left,
and since the deadline is also equal to 𝑐max (𝑇 = 𝑐max = 24 hours),
all the algorithms must start compulsory execution immediately.
As anticipated, increasing the deadline leads to enhanced carbon
savings across all deadlines, with FTL consistently achieving the
highest savings.
Key Takeaways: Increasing the deadline (𝑇 ) allows for higher carbon
savings. Again FTL consistently outperforms its peers.

5 CONCLUSION
In conclusion, this paper presents FTL, a data-driven meta-
algorithm that enhances carbon-aware scheduling in computing
environments. Through extensive testing, we have shown that FTL
outperforms traditional algorithms by adapting to real-time data
and historical trends. By aligning job length predictions with his-
torical performance, FTL achieves 8.2% and 14% average carbon re-
ductions over the closest runner-up algorithm and carbon-agnostic
scheduling across all regions, respectively. Future research will
involve designing meta-algorithms for other scheduling modali-
ties, such as scaling, where prediction errors highly impede carbon
savings.
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