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ABSTRACT
Datacenters are becoming one of the most significant worldwide
consumers of electricity and sources of carbon emissions. With
the end of Dennard’s scaling, and as cloud datacenter power us-
age effectiveness becomes close to optimal, we can no longer rely
on hardware advancements alone to sustainably meet growing
computational needs. System software must play a bigger role in
optimizing energy consumption of applications. We argue the op-
erating system (OS), at the heart of datacenter resource allocation
and scheduling decisions, must be made energy-aware.

This paper has two goals. First, we show how Linux can be made
energy-aware without making any kernel changes, by introducing
a new energy accounting framework, Wattmeter. Wattmeter uses
eBPF functions to efficiently measure per-process energy consump-
tion at millisecond-scale granularity with low overhead. Second, we
show how this information can be used to make energy-informed
scheduling decisions, with two proof-of-concept scheduling poli-
cies: a policy that equalizes energy across processes, and one that
caps the amount of energy that can be consumed by a process.
This paper represents a first step in making the operating system
energy-aware, and demonstrating how that capability can be used
to control applications’ energy consumption.

CCS CONCEPTS
• Software and its engineering → Scheduling; • Hardware →
Power estimation and optimization.
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1 INTRODUCTION
Datacenters are already estimated to account for 1-2% of global
electricity consumption and carbon emissions [16]. At the same
time, application compute demands are growing exponentially,
especially with the rise of AI. With the end of Dennard’s scaling,
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we can no longer rely solely on hardware-level energy efficiency
to curb the rise of datacenter energy usage [2].

In this work, we focus on making the Linux operating system
(OS), the fundamental software abstraction underlying datacenter
applications, energy-aware. In particular, the OS scheduler plays a
pivotal role in deciding which processes and threads get access to
hardware resources at millisecond-scale timescales. Although Linux
offers the Energy-Aware Scheduler (EAS) that performs energy-
aware process placement for CPUs with asymmetric topologies, it
does not consider the energy and power characteristics of individ-
ual processes (§7). Our initial experiments (§2.4) find significant
variance in the power consumption of different processes, and we
therefore we aim to make Linux aware of the energy-profile of
processes when making scheduling decisions.

We target two primary challenges. First, how can the scheduler
be made aware of the energy consumption of specific processes at
a sufficiently-fine granularity to make online scheduling decisions,
without incurring a high overhead. Second, can we design new
scheduling policies that take the energy consumption of processes
into account without making kernel changes.

To tackle the first challenge, we observe that modern Intel and
AMD servers provide system-level millisecond-scale energy read-
ings at the socket level, via running average power limits (RAPL) [7].
To estimate per-process energy consumption, systems such as
Scaphandre [14], Kepler [1], and EnergAt [12] attribute RAPL read-
ings to each process based on their respective CPU time and re-
source utilization. However, these estimates are not granular enough
for the process scheduler because they monitor energy by read-
ing RAPL counters from userspace at much coarser time scales
(§2.1). If we configure these tools to monitor power at millisecond-
scale frequencies they would incur very frequent context switches,
consuming excessive CPU and hurting application runtimes.

In contrast to these systems, our approach is to measure RAPL
counters and store their state within the kernel, without requiring
a context switch to fetch each measurements. We implement a
novel energy accounting framework, Wattmeter, which utilizes
the eBPF framework [9] to read energy measurements from RAPL
upon every context switch. This allows for real-time, precise energy
measurements at the scheduling-event level.

To tackle the second challenge, we leverage recent frameworks
that allow Linux’s scheduling policies to be customized from user-
space [5, 15, 19]. As a proof of concept of how process scheduling
policies can be made energy-aware, we developed two simple sched-
uling policies on top of Google’s extensible userspace scheduling
framework, ghOSt [15]. Our policies include energy-fair scheduler
(EFS), which equalizes energy share between processes, and energy-
capped scheduler (ECS), which allows users to set limits on how
much energy or power each process can use. Implementing these
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policies requires no further kernel changes beyond the initial in-
stallation of the custom ghOSt kernel. With the potential future
integration of sched_ext [5] into the official Linux kernel, similar
sched_ext-based policies could be implemented without any ker-
nel modifications at all. We intend to release our implementations
as open source in the future. We evaluate EFS and ECS, and show
they can equalize and limit the amount of energy each process
consumes, respectively, compared to the default Linux scheduling
policy, CFS, which cannot control process energy consumption.

2 BACKGROUND
This section provides background on the tools that allow us to
make the Linux scheduler energy-aware without making kernel
changes: RAPL (§2.1), eBPF (§2.2) and scheduling frameworks like
ghOSt (§2.3). Afterwards, we demonstrate experimentally that even
processes that are allocated the same CPU time may exhibit widely-
varying energy consumption, due to their different CPU, memory
and I/O access patterns (§2.4).

2.1 Energy Measurement Tools
RAPL is a power management interface first implemented by In-
tel in the Sandy Bridge architecture in 2011, for monitoring and
controlling energy use across computer components without extra
hardware [7]. AMD also implements this measurement interface,
starting with its first Zen architecture in 2017. RAPL defines several
power domains that corresponds to specific hardware components,
such as core (CPU cores), uncore (integrated GPUs), pkg (whole
CPU package), dram (DRAM), and psys (peripheral devices). Each
domain corresponds to specific hardware components, allowing de-
tailed monitoring and management of energy usage across different
parts of a computing device. The energy measurements are usu-
ally updated at an interval of approximately 976𝜇𝑠 . RAPL exposes
the measurement through model-specific registers (MSR), which
can be accessed through higher-level OS interfaces such as Linux’s
powercap and perf_event [27].

Higher-level power measurement tools like Scaphandre [14],
Kepler [1], and EnergAt [12] utilize RAPL to estimate per-process
energy consumption via a userspace polling mechanism, attribut-
ing energy measurements based on CPU runtime statistics found
in Linux (procfs). However, since the polling process runs in
userspace, millisecond-scale measurements are only possible if
the polling process is scheduled to run precisely every millisecond
(immediately after RAPL updates). There is no guarantee that their
polling process would get scheduled so frequently, and even if it did,
the constant context switching would incur a very significant over-
head. As a result, these tools cannot offer accurate millisecond-scale
energy measurements.

Wattmeter avoids this pitfall by using eBPF functions that run
within the kernel, avoiding the need to switch back to userspace
and avoiding the need to dedicate a thread to busy-polling.

2.2 eBPF
eBPF [9] is a Linux- and Windows-supported framework that en-
ables userspace applications to offload simple functions into the ker-
nel space. At installation time, these functions are verified to ensure

(a) Time share (b) Energy share

Figure 1: Two processes that get scheduled the sameCPU time
by CFS but significantly differ in their energy consumption.

their safety. For example, the eBPF verifier checks that the func-
tions do not exceed a specified instruction limit, contain unbounded
loops, or perform out-of-bounds memory accesses. Tracepoints are
static hooks in the Linux kernel that eBPF programs can attach
to. When a traced event happens, eBPF programs attached to the
tracepoint are activated to execute and gather data associated with
the event. eBPF also facilitates safe interaction between userspace
applications and kernel eBPF programs via shared data structures
known as eBPF maps. In the context of Wattmeter, eBPF programs
are deployed at various scheduler tracepoints to keep account of
each process’s precise execution timeslice and its corresponding
energy consumption (§3).

2.3 Linux Scheduling Customization
Frameworks

ghOSt is a scheduling framework developed by Google that del-
egates kernel-level scheduling decisions to userspace policies in
Linux systems, thereby enabling flexible and rapid adaptation to
the dynamic needs of datacenter workloads [15, 19]. It modifies
the Linux kernel to introduce a ghOSt scheduler class that can be
instantiated from userspace with any custom scheduling policy.
The framework supports communication, abstraction, and action
protocols that allow user programs to express complex policies with
minimal overhead. By installing the ghOSt kernel, we implement
our energy-aware scheduling policies directly in userspace (§4.1),
without having to modify Linux kernel code.

Another framework for implementing custom scheduling poli-
cieswithout direct kernelmodification isMeta’s sched_ext. sched_
ext is a Linux kernel patch that proposes a new abstract scheduler
class, which can be instantiated with scheduling programs in eBPF
at runtime. There are ongoing discussion of upstreaming sched_
ext into Linux. We have chosen to implement the scheduling poli-
cies proposed in this paper with ghOSt, but it is also possible to
implement them with sched_ext.

2.4 Motivation: Task Energy Variability
Schedulers commonly try to ensure fairness by simply equally
splitting the amount of time the tasks get allocated on a particular
computing resource. This approach is exemplified by CFS, which
tries to equalize the amount of CPU time allocated to each process.
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However, the amount of time given to a process is not always a
good predictor of the amount of energy that process will consume.

We demonstrate this discrepancy between CPU and energy con-
sumption with a simple experiment. Figure 1 shows the energy con-
sumption of two processes that are run on Linux with CFS, which
allocates each of the processes roughly the same CPU time. The two
processes that execute two Python programs. Process 1 is memory-
intensive: it repeatedly reads and writes large byte-arrays into heap
memory, while process 2 is CPU-intensive: it repeatedly computes
SHA256 on long strings (see §5 for the full evaluation setup). We
measure each process’s energy consumption using Wattmeter.

The experiment shows that despite the fact that both processes
are scheduled almost identical CPU time, process 2 consumes about
50% more energy than process 1. In general, variability in energy
consumption can stem from factors such as the usage of differ-
ent CPU instructions, memory consumption, and the cache hit
rate [17]. Linux today has no awareness of this variability in energy
consumption across processes.

One can imagine energy could be taken into account in different
scheduling policies. For example, one may want to lower the total
energy consumption across the entire system by intelligently sched-
uling processes on each node. In §4.1, as a proof of concept, we use a
case study of a simple policy that simply tries to equalize the energy
consumption across processes and prioritize more energy-efficient
processes, while keeping CPU utilization high. One can also imag-
ine that in multi-tenant environments, administrators would like
to cap the amount of power each process consumes (e.g., impos-
ing cgroup energy limit). Datacenter operators already implement
similar power-capping policies today at the VM level, which allows
them to oversubscribe VMs to racks, keeping hardware utilization
high [10, 21, 31], and they may seek to do so at a more granular
level than an individual VM. In §4.2, we implement another policy
that tries to limit the power usage of individual processes.

3 WATTMETER: MILLISECOND-SCALE
PER-PROCESS POWER ACCOUNTING

Unlike existing approaches [1, 12, 14], which measure the coarse-
grained system-wide energy and attribute the energy consumed
by each process according to their CPU time, we want to directly
measure the energy usage for each execution interval, from the mo-
ment a process is scheduled until it is de-scheduled. More precisely,
for any process 𝑝 , its energy consumption is given by

𝐸 (𝑝) =
∫ 𝑡𝑛

𝑡0

on_cpu(𝑝, 𝑡) · (𝑊𝑡 −𝑊static) 𝑑𝑡

where [𝑡0, 𝑡𝑛] is the measurement period, on_cpu(𝑝, 𝑡) ∈ {0, 1} de-
notes whether 𝑝 is running on the CPU at moment 𝑡 , and𝑊𝑡 ,𝑊static
are the current power and the system’s static power, respectively.
In practice, 𝑑𝑡 is RAPL’s measurement granularity, which is approx-
imately 1𝑚𝑠 .

To measure power at a millisecond-scale granularity, Wattmeter
utilizes eBPF’s tracepoint mechanism, which triggers eBPF pro-
grams instantaneously, without having to wait for the measurement
program itself to be scheduled. The advantage of this approach is
that it incurs much lower overhead than reading the data from
userspace, because it eliminates the need for context switching, and

Figure 2: System diagram. Energy measurement components
are green (§3); Scheduling components are yellow (§4).

it can measure power at a much finer time granularity. It also does
not require kernel changes.

Challenges. There are several technical hurdles in implementing
Wattmeter’s functionality in eBPF. First, eBPF access restrictions
prevent direct access to the RAPL interface. Therefore, Wattmeter
obtains energy measurements through a perf_event that exposes
RAPL data. However, eBPF programs cannot directly create perf_
event objects. To overcome this second challenge, the userspace
agent, which runs the scheduler (see more details below), opens a
perf_event and passes it to Wattmeter through an eBPF BPF_MAP_
TYPE_PERF_EVENT_ARRAY map, which then reads from the perf_
event on the user’s behalf. This mechanism ensures thatWattmeter
can effectively measure energy consumption without violating
eBPF’s access constraints.

Architecture. Wattmeter is an eBPF program that attaches to
the sched_switch tracepoint (Figure 2). It maintains the following
eBPF maps, accessible to the userspace program:

(1) total_consumption: keeps track of the system-wide energy
consumption and CPU time.

(2) pid_to_consumption: associates each process’s PID with
its accumulated energy consumption and CPU time.

Upon each context switch, sched_switch activates Wattmeter to
update its states. The program first updates total_consumption
with the current energy and time. It then attributes the energy and
CPU time since the last context switch to the process that is being
switched off of the CPU in pid_to_consumption.

Hardware support. At the moment, Intel only supports CPU-
socket-level measurement, and not per-core measurements. With
this hardware limit, Wattmeter is unable to obtain accurate per-
process energy consumption for parallel processes running onCPUs
within the same socket. Fortunately, AMD’s Zen architecture does
offer per-physical-core energy counters, and there has been ongoing
discussions and development for Linux support for exposing these
data through perf_event [20].
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4 CASE STUDIES
This section describes the design of two proof-of-concept energy-
aware scheduling policies that utilize energy data measured using
Wattmeter. Both polices are implemented as a userspace ghOSt
agent that communicates with the kernel-based ghOSt scheduling
class to execute scheduling decisions, and interacts with Wattmeter
and the rest of the system as shown in Figure 2.

4.1 Energy-Fair Scheduling
Linux’s default scheduler, CFS, tries to provide each process a fair
share of CPU time, whilemaximizing CPU utilization, but it does not
take into account that even if the time share of different processes is
relatively similar, their energy consumption may vary considerably
(see §2.4). Equipped with Wattmeter, we present a modification of
CFS that instead equalizes energy share across processes.

EFS has a simple goal of balancing energy across processes, while
maintaining high CPU utilization. The latter is important, because
it ensures tasks make forward progress (e.g., a trivial solution to
equalizing energy would be to simply shut the entire server down).
To do so, EFS builds on top of CFS to take power into account. The
CFS algorithm keeps track of the virtual runtime (vruntime) of each
process, which is the real runtime weighted by each process’s nice
value. At each scheduling decision, CFS picks the process with the
lowest vruntime. EFS works similarly: it first computes vruntime,
and the difference is that it further scales vruntime with the an
additional coefficient vpower to compute venergy, which is used to
make scheduling decisions in place of vruntime. In precise terms,
the update rule for venergy is

Δvenergy𝑡 (𝑝) = Δvruntime𝑡 (𝑝) · vpower𝑡 (𝑝),
for each timestep 𝑡 and each process 𝑝 ∈ P that is managed by
EFS. Then, EFS picks process 𝑝 where

𝑝 = arg min
𝑝∈P

venergy(𝑝) .

To compute vpower𝑡 (𝑝), the EFS agent keeps an exponential
moving average (EMA) of 𝑝’s power in Watts, given by

PEMA
𝑡 (𝑝) = (1 − 𝛾) · PEMA

𝑡−1 (𝑝) + 𝛾 · (𝑊𝑡 −𝑊static),
where 𝑊𝑡 is computed from Wattmeter’s pid_to_consumption
eBPF map and 𝛾 the smoothing factor of EMA. The usage of EMA
allows us to compute a process’ overall power by taking into ac-
count both historical and new energy readings, and 𝛾 is a tunable
parameter that controls how much emphasis is put on the new data
points.

At each timeslice, the statistics of the currently-running process
is sufficient to update the these quantities. Then, vpower𝑡 (𝑝) is
given by

vpower𝑡 (𝑝) =
PEMA
𝑡 (𝑝)∑

𝑝∈P PEMA
𝑡 (𝑝)

.

In other words, vpower𝑡 (𝑝) captures the proportion of system-wide
power consumed by process 𝑝 .

4.2 Energy-Capped Scheduling
Control groups (cgroup) play a pivotal role in resource manage-
ment and isolation. They allow system administrators to allocate,

(a) Time share (b) Energy share

Figure 3: EFS equalizes the energy consumption of two pro-
cesses with different power consumption profiles.

prioritize, deny, and manage system resources—such as CPU time,
memory, network bandwidth, and disk I/O, among user-defined
groups of processes. This mechanism is commonly used in multi-
tenant environments like Docker and Kubernetes, as it provides
the underlying functionality necessary for limiting and isolating
resource usage. However, cgroup does not offer energy-related allo-
cations or management. Using precise energy measurements from
Wattmeter, we design a process-level energy-capping mechanism.

Similar to cgroup, users can set an energy limit on individual
processes by providing a timewindow𝑇 and a limit value 𝐸limit. The
energy-limited process should be allowed to consume a maximum
of 𝐸limit Joules within any time window of 𝑇 seconds.

We implement energy capping by performing a "limit check"
at each scheduling decision. By keeping track of each process’s
energy consumption in a moving window of 𝑇 seconds, we can
determine whether a process has consumed more than 𝐸limit Joules
in the current time window. When picking the next task to run,
ECS only picks from the subset of processes that have not reached
their limits.

5 EVALUATION
For our experiments, we use amachine equippedwith RAPL-enabled
processor: 11th Gen Intel Core i5-1135G7 running at 2.40GHz. In
Wattmeter, we only measure RAPL’s pkg domain, as discussed in
§6. Due to Intel’s lack of per-core energy domain, we ran our ex-
periments on a single core. We plan in the future to run multicore
experiments on an AMD machine that supports RAPL per-core
energy domains.

In experiments for Figures 1, 3 and 5, we spawned the same two
processes described in §2.4. In the experiment for Figure 4, we ran
dynamic workloads that alternate between process 1 and process 2.
All of our experiments execute for a period of 10 seconds.

5.1 Energy Fairness
Figure 3 shows the effect of EFS on the CPU and energy shares
between the two processes. With an interval of 0.1 seconds, we
measured how much time and energy has been used by each pro-
cess. Then, the time and energy share of the process was computed
using a sliding window of 0.5 seconds. Since power consumption
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(a) CFS energy share (b) EFS energy share

Figure 4: EFS can respond to dynamic power consumption of
workloads.

(a) CFS (b) ECS, process 2 capped at 5 J/s

Figure 5: ECS with energy capping for process 2.

differs across the processes, EFS balances energy share by prioritiz-
ing the more energy-efficient process (process 1). Compared with
CFS (see Figure 1), EFS allocates CPU time differently to achieve
energy fairness. In contrast to CFS, which keeps the processes con-
suming different power throughout the experiment, EFS equalizes
the energy share. Note that across the entire experiment, both EFS
and CFS fully utilize the CPU core.

Figure 4 demonstrates EFS’s ability to balance energy between
processes with dynamically changing behaviors. The graph for CFS
shows a drastically alternating energy consumption pattern when
their CPU time is equalized. EFS is able to handle such dynamic
workloads well and keep the energy share close to fair at all times.

5.2 Energy Capping
Figure 5 presents the results for an experiment with the same two
processes, where we capped process 2’s energy usage to 5 J/s. The
red line in Figure 5b represents the energy cap, and the experiment
shows that ECS is effective in limiting process energy consumption
according to user specification. We show the consumption patterns
under CFS in Figure 5a, without any energy limits. Since process
2 is more power-intensive, it consumes more energy within the
sampling period.

5.3 Overhead of Wattmeter
To measure how much overhead is introduced by Wattmeter and
our scheduling policies, we compare the throughput of a system

equipped with EFS with one equipped with CFS to run the same
tasks. Specifically, we ran two identical CPU-bound tasks, each
repeatedly computing a SHA256 of long strings in a bounded loop.
We then measured the time taken for both processes to finish, and
repeated this experiment 10 times.

The result shows that processes scheduled with EFS only take
1.25% more time to finish: on average, EFS tasks take 10.83 seconds,
and CFS tasks take 10.70 seconds. This small overhead also includes
the overhead from the ghOSt framework, which means that the
overhead from our energy measurements and scheduling policy is
even smaller.

6 LIMITATIONS AND FUTUREWORK
Peripheral devices. Besides CPU and RAM, other devices like

disks, NICs and GPUs also consume considerable amounts of en-
ergy. On certain systems, RAPL also offers the psys domain that
reports energy consumption of these devices. However, this energy
usage is currently not captured by Wattmeter due to challenges of
attributing the consumed energy to processes. For example, when a
disk performs an operation, the consumed energy should be attrib-
uted to the caller process (currently blocked by the disk operation)
instead of the process that is currently running on the CPU. A pos-
sible solution would be to instrument the I/O operations initiated
by each process with eBPF, and assign energy to each operation.
The exact amount of energy to assign can be measured empirically
or found in the manufacturer’s data sheet for each device, or using
specialized interfaces like the SMART API for storage devices.

Distributed applications. We currently focus on scheduling pro-
cesses on a single node. However, most modern datacenter appli-
cations span many nodes across a local (or wide area) network.
Attributing energy on a single node is just the first step in attribut-
ing energy for large-scale distributed applications. To do the latter,
the energy consumption of the network itself, as well as the energy
consumption of tasks across many nodes needs to be taken into
account, and integrated into a distributed task scheduler such as
Kubernetes. The Kepler project [1] has taken some steps in this
direction, although it operates at much coarser granularity than
Wattmeter.

Minimizing total energy consumption. We implemented two sim-
ple policies that equalize energy across processes and limit the
energy of any given process. However, one can imagine opera-
tors would like to reduce the total energy consumption of tasks
(while meeting a certain runtime or performance goal). Such a
policy would be more complicated to implement, since it requires
the scheduler to also understand the performance constraints and
power profile of each task over time, and schedule tasks appropri-
ately. We leave the exploration of such a policy for future work.

Security. RAPL is known to be vulnerable to power side-channel
attacks, in which attackers can use the variations in power con-
sumption to extract private information [24]. There also exist well-
known vulnerabilities for eBPF programs, which can allow attacks
to break container isolation [13] and execute malicious code in
the kernel [22]. Since Wattmeter is built on top of eBPF and ac-
cesses RAPL information, only privileged users should be allowed
to access it.
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7 RELATEDWORK
There are existing tools for measuring energy and resource con-
sumption for various settings and applications. On Linux and cloud
platforms, there are tools for estimating and controlling process- or
container-level energy consumption based on RAPL, hardwaremon-
itoring, and other instrumentation mechanisms [1, 6, 12, 14, 27, 30].
However, as discussed in §2.1, only Wattmeter offers millisecond-
scale per-process measurement that is crucial for implementing an
energy-aware scheduling policy.

The Linux Energy-Aware Scheduler (EAS) performs energy-
aware process placement for CPUs with asymmetric topologies
(such as Arm’s big.LITTLE). When instantiated with an Energy
Model (EM), during a process’s wakeup routine, EAS chooses the
CPU that is predicted to yield minimal energy consumption without
hurting the system’s throughput [23]. However, it has no awareness
of individual process energy or power consumptions. In addition,
our energy-aware scheduling policies are topology-agnostic and
function even on a single core. A possible future directions is to
discover ways to integrate EAS with scheduling policies enabled
by Wattmeter in asymmetric multi-core settings.

Dynamic Voltage Frequency Scaling (DVFS) is a common tech-
nique used to reduce power consumption by adjusting the voltage
and frequency of the device based on its workload. It is orthogonal
to the energy-aware scheduling policies presented in this paper,
which leave the system frequency unchanged. A possible future
work is to explore policies that use DVFS in conjunction with
energy-aware scheduling policies enabled by Wattmeter.

Energy efficiency has been extensively studied in the context of
real-time systems. In these systems, process schedulers are tasked
with balancing energy efficiency against deadline compliance and
system throughput. Existing research indicates that real-time sys-
tems equipped with different schedulers can exhibit vastly different
energy consumption profiles [3, 25, 26, 28, 29, 32, 33]. Compared
to these real-time policies, our energy-aware scheduling policies
work in more generic environments, without real-time constraints
and guarantees.

Research in energy-aware cloud computing focuses on develop-
ing schedulers capable of intelligent consolidation of workloads,
cross-machine load balancing, and virtualmachinemigration. These
schedulers enable the dynamic activation and deactivation of ma-
chines based on demand, aiming to reduce energy footprint with-
out hurting quality of service [4, 8, 11, 18]. They operate on the
container- or system-level, which is orthogonal to the process-level
scheduling policies presented in this paper.
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