
Towards Sustainable Large Language Model Serving
Sophia Nguyen∗

University of Waterloo
Waterloo, ON, CAN

s62nguye@uwaterloo.ca

Beihao Zhou∗
University of Waterloo
Waterloo, ON, CAN

b72zhou@uwaterloo.ca

Yi Ding
Purdue University

West Lafayette, IN, USA
yiding@purdue.edu

Sihang Liu
University of Waterloo
Waterloo, ON, CAN

sihangliu@uwaterloo.ca

Abstract
In this work, we study LLMs from a carbon emission perspective, ad-
dressing both operational and embodied emissions, and paving the
way for sustainable LLM serving. We characterize the performance
and energy of LLaMA with 1B, 3B, and 7B parameters using two
Nvidia GPU types, a latest-generation RTX6000 Ada and an older-
generation T4. We analytically model operational carbon emissions
based on energy consumption and carbon intensities from three
grid regions — each representing a different energy source mix, and
embodied carbon emissions based on chip area and memory size.
Our characterization and modeling provide us with an in-depth
understanding of the performance, energy, and carbon emissions
of LLM serving. Our findings highlight the potential for optimizing
sustainable LLM serving systems by considering both operational
and embodied carbon emissions simultaneously.

CCS Concepts
• Social and professional topics → Sustainability; • Comput-
ing methodologies → Machine learning.
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1 Introduction
Large language models (LLMs) have revolutionized numerous in-
dustries, including search engines, natural language processing,
and programming [14, 26, 32]. Their widespread adoption has sig-
nificantly increased energy demands. The cycle of LLM deploy-
ment includes training and inference/serving. Recent studies reveal
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that LLM serving now exceeds training in energy consumption,
leading to substantial environmental impacts, notably in carbon
emissions [2]. The carbon emissions stemming from the energy
consumption of these applications are referred to as operational
carbon emissions – typically quantified as carbon dioxide equivalent
(CO2eq). For instance, serving one prompt in ChatGPT generates
more than 4 grams of CO2eq [34] – over 20 times the carbon emis-
sion of a web search query [9].

The development of LLMs not only demands significant energy,
but also requires substantial computing hardware resources. Train-
ing and serving LLMs require powerful GPUs and machine learning
(ML) accelerators, such as NVIDIA HGX [21] and Google TPU [8].
These devices are typically equipped with large processor chips
manufactured with advanced feature sizes (e.g., 5 nm CMOS) and
high-bandwidth, high-capacity onboard memory, enabling efficient
execution of LLMs. Nevertheless, the manufacturing process of the
hardware entails substantial carbon emissions, known as embodied
carbon emissions. These emissions are particularly prominent in
the case of the latest high-performance devices, as demonstrated in
prior studies [10, 13, 39].

To mitigate the environmental impact of LLM serving, a thor-
ough understanding of its carbon emissions at a granular level, such
as per-token level across various hardware platforms, is essential.
However, this aspect has been under-explored. Some studies have
only focused on performance metrics. For example, SplitWise [24]
divides LLM serving into two phases—prefill and decode—and exe-
cutes them on different GPUs; PowerInfer reduces LLMs’ need for
GPU onboard memory to better adapt LLMs to consumer-grade
GPUs [27]. Another line of work examines the carbon emissions
of traditional ML and web service applications [15, 25, 33]. How-
ever, LLMs differ significantly from these applications due to their
highly compute and memory-intensive nature. Most recent work on
carbon modeling, such as ACT [10], LLMCarbon [6], and carbon ac-
counting for BLOOM [16], focus on end-to-end, high-level counting
without profiling LLMs on real-world hardware platforms. There-
fore, there is a gap in understanding the environmental impacts of
LLM serving at a granular level.

To bridge this gap, we characterize LLMs through low-level pro-
filing and modeling to understand the environmental impact of
LLM serving. We examine the carbon emissions of three parame-
ter sizes of Meta’s LLaMA model [31] – 1B, 3B, and 7B – on two
different types of GPUs: a latest-generation Nvidia RTX6000 Ada
from 2023 and an older-generation Nvidia T4 released back in 2018.
We first characterize the performance and energy consumption
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Table 1: Specifications of GPUs in this work.

GPU Type RTX6000 Ada T4

Architecture Ada Lovelace Tesla
Chip Size 608.4 mm2 545 mm2

Technology Node 5 nm 12 nm
Memory 48 GB 16 GB
Thermal Design Power 300 W 70 W
Year 2023 2018

Embodied Carbon 26.6 kg 10.3 kg

of different configurations (i.e., model parameter size and batch
size), including both per-query and per-token measurement in the
prefill and decode phases of LLM serving execution (Section 2).
Then, we model their operational and embodied carbon emissions,
respectively (Section 3). For operational carbon, we analyze the
emissions by considering three regions with different carbon inten-
sities (CIs) [4], expressed as CO2eq emissions per kWh of electricity
consumption. For embodied carbon, we analytically model emis-
sions based on chip area and memory size using existing modeling
tools [10]. We conclude with a discussion of open questions and fu-
ture directions based on our characterization and modeling findings
(Section 4). We summarize our key findings as follows:
• The older and slower T4 has higher energy efficiency compared to
the newer and faster RTX6000Adawhen processing less compute-
intensive requests (e.g., batch size of 1), especially in the decode
phase of LLM serving. This finding indicates that older hardware
can be viable in specific configurations.

• A configuration (i.e., model parameter size and batch size) that
achieves the highest throughput on a particular GPU type does
not necessarily yield the highest energy efficiency, highlighting
the complex tradeoffs in LLM serving design space exploration.

• With incorporation of both embodied and operational carbon, an
energy-efficient configuration may not necessarily minimize car-
bon emissions. Instead, factors such as model parameters, batch
size, and GPU platform collectively influence carbon emissions.

• Strategically using older GPUs like T4 could effectively reduce
total carbon emissions by amortizing the embodied carbon emis-
sions of GPUs over time.

2 LLM Characterization
In this section, we characterize the performance and energy con-
sumption of LLM serving.

2.1 Methodology
This section describes the methodology of the characterizations.

Model and dataset. We characterize LLM serving using the
widely-used LLaMA model [31] with 1B, 3B, and 7B parameters.
For all experiments, we evaluate prompts from the Alpaca dataset
[28]. While large-scale LLMs (e.g., those with hundreds of billions
of parameters) are powerful, recent work has shown smaller models
(e.g., 1B parameters) can achieve high accuracy and are especially
valuable in many scenarios, e.g., speculative decoding [12], fine-
tuned for specific tasks [11], working in cooperation with large
models [35], and retrieval-augmented generation (RAG) [37].
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Figure 1: Latency and energy consumption of RTX6000 Ada
and T4 under different parameter sizes and batch sizes.
“OOM”=out of memory.

GPU platforms. We evaluate LLMs on two GPU platforms:
RTX6000 Ada and T4, as listed in Table 1. RTX6000 Ada is based
on Nvidia’s newer Ada Lovelace architecture that became available
in 2023. It has a large 48 GB onboard memory and is manufactured
with the advanced 5 nm node [30]. T4 is based on an older Nvidia
Tesla architecture, equipped with a smaller 16 GB onboard memory
that was released in 2018 and manufactured with an older 12 nm
node [29]. RTX6000 Ada has a much higher 300 W thermal design
power (TDP) as compared to T4’s 70 W.

Measurement. As the output length varies by prompts and
model sizes, we time LLM execution for 150 tokens and consider
only prompts generating more than 150 tokens when comparing
end-to-end latency and energy consumption. As LLMs typically
run on GPUs and mainly utilize GPU resources, this study focuses
on GPU power consumption. We use NVML [22] to measure the
GPU’s power every 100 ms. The energy consumption (𝐸prompt) of
a prompt is the product of the average GPU power (𝑃prompt) and
the execution time of the prompt (𝑡prompt):

𝐸prompt = 𝑃prompt · 𝑡prompt (1)

2.2 Latency vs. Energy Consumption
Wefirst compare the latency and energy consumption across LLaMA
models with different parameter sizes and GPU platforms. We re-
port the average power consumption and median latency values
for all prompts, during the execution of a specific model/batch size.

Latency. Figure 1a shows the median prompt processing la-
tency (s) (log-scaled y-axis) across different model sizes from 1B to
3B and batch sizes from 1 to 64 (x-axis). Across all parameter sizes,
the latency is higher in T4 compared to RTX6000 Ada. When the
batch size is 1, T4 is 1.1×, 1.4×, and 2.2× slower than RTX6000 Ada
when running 1B, 3B, and 7B-parameter models, respectively. T4
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is more prone to latency increase than RTX6000 Ada as the batch
size and parameter size of the model increases, as T4 is an older,
lower-tier GPU compared to RTX6000 Ada. T4 is up to 11.4× slower
than RTX6000 Ada when running the 7B model with a batch size of
4. For sufficiently large model and batch sizes, the 16 GB memory
on T4 renders it unsuitable for outputting results, leading to "OOM"
(out of memory) indications.

Energy consumption. Figure 1b shows the energy consump-
tion (J) (log-scaled y-axis), which is calculated from the average
power consumption when executing a specific model/batch size
(x-axis) and the previous median latency, using Equation 1. For
both RTX6000 Ada and T4, the energy consumption increases as
the parameter and batch size increase, due to the higher compute
intensity and longer execution time.

Surprisingly, despite RTX6000 Ada being a recently released
GPU that is better optimized for LLMs, the energy consumption
of T4 is 28 % and 20 % lower than RTX6000 Ada when executing a
batch size of 1 in the 1B and 7B parameter models, respectively. And,
the 3B model shows the energy consumption of T4 is not much
higher than RTX6000 Ada (1.4×). The main reasons are two-fold.
First, a batch size of 1 has a lower computational load. Even T4 is
capable of executing such a load efficiently. Second, RTX6000 Ada’s
TDP is more than 4× higher than T4. Therefore, under such a light
load, RTX6000 Ada is less power-efficient than T4.

When the batch size increases, T4 consumes more energy than
RTX6000 Ada (up to 2.9×) – in these more compute-intensive sce-
narios, the newer RTX6000 Ada has a significant advantage over the
older and less performant T4. Despite the higher TDP, RTX6000 Ada
executes the prompts an order of magnitude faster than T4 and
thus reduces the per-prompt energy consumption.

Takeaway 1: RTX6000 Ada is faster than T4, regardless of the
parameter size or batch size. However, when executing a batch
size of 1, T4 may have an advantage over RTX6000 Ada, because
T4 runs at a much lower power without major degradation in
execution time. RTX6000 Ada becomes more energy-efficient
under larger batch sizes, attributed to its faster processing speed.

2.3 Prefill and Decode Phases
LLM execution consists of prefill and decode phases. The prefill
phase involves processing the prompt, initializing the model state,
and then generating the first token. Afterward, the decode phase
generates the rest of the tokens in an auto-regressive fashion, until
the termination token (or output token limit) is reached. Prior work
has shown that these two phases have different performance charac-
teristics [7, 24, 40], where the prefill phase is compute-bounded and
more compute-intensive, and the decode phase is memory-bounded
and less compute-intensive. In this experiment, we study not only
the performance of both phases but also their energy consump-
tion. Because T4 experiences OOM when running large batch and
parameter sizes, we evaluate the LLaMA with 1B parameters.

Prefill Phase. We evaluate the prefill phase by measuring its
throughput in processing input prompts (tokens/s) and the cor-
responding per-token energy consumption (J/token). Figure 2a
shows the throughput and Figure 2b energy consumption (log-
scaled y-axis) for different batch sizes (x-axis) when running on
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Figure 2: Latency and throughput in the prefill phase (1B-
parameter LLaMA).
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Figure 3: Latency and throughput in the decode phase (1B-
parameter LLaMA).

RTX6000 Ada and T4. We observe that RTX6000 Ada is more effi-
cient from both a throughput and energy perspective during the
prefill phase. This is because the prefill phase is compute-bounded,
which prefers more powerful GPUs like RTX6000 Ada.

We also notice that the throughput reaches the peak when the
batch size is 8 on T4 and 32 on RTX6000 Ada. Energy-wise, the
per-token energy is lowest when batch size is 8 on T4 and 16 on
RTX6000 Ada. RTX6000 Ada achieves higher throughput and lower
per-token energy in a larger batch size than T4 because it can better
handle compute-intensive scenarios. However, the batch size that
achieves the highest throughput is not necessarily the same as
which achieves the highest energy efficiency.

Decode Phase.We evaluate the decode phase by measuring the
throughput (tokens/s) and per-token energy consumption (J/token).
Figure 3a and Figure 3b show the throughput and per-token en-
ergy (log-scaled y-axis), respectively, in different batch sizes (x-axis).
Comparing RTX6000 Ada and T4 in the decode phase, RTX6000 Ada
always outperforms T4 in throughput but the difference is not as sig-
nificant as the prefill phase, as the decode phase is memory-bound
and less compute-intensive than the prefill phase. From an energy
perspective, the per-token energy consumption of T4 is lower than
RTX6000 Ada when the batch size is 1 — T4 consumes 20% less
energy than RTX6000 Ada but only 24% lower throughput. As the
batch size increases, RTX6000 Ada becomes more energy-efficient
— up to 5.5× higher throughput and 2.4× lower energy consump-
tion than T4. Although older GPUs like T4 are less powerful, their
performance is not much worse than RTX6000 Ada while consum-
ing less energy in a batch size of 1, similar to the observations in
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Section 2.2. We further observe that the throughput and per-token
energy consumption generally improve as the batch size increases,
unlike the prefill phase.

Takeaway 2:Dividing LLM serving into prefill and decode phases
reveals more energy optimization opportunities, including dis-
tributing them across different GPU platforms. In the prefill phase,
the batch size with the highest throughput may not yield the best
energy efficiency, indicating an intricate interplay between batch
size, performance, and energy consumption. In the decode phase,
the optimal tradeoff between energy efficiency and batch size
also varies across GPU platforms.

3 Carbon Emission Analysis
In this section, we analyze the carbon emissions of LLM serving.

3.1 Methodology
We model and analyze the total carbon emissions for LLM serving,
which include operational and embodied carbon emissions.

Operational Carbon. We model the operational carbon 𝐶op
based on the energy consumption and carbon intensity (𝐶𝐼 ) of
the grid. The energy consumption of a prompt, 𝐸prompt, is the en-
ergy consumed during the execution time, as we have shown in
Section 2.2. Therefore, the operational carbon of a prompt is:

𝐶prompt,op = 𝐸prompt ·𝐶𝐼 (2)
In this work, we study CIs of grids in three regions [4]: Québec

(QC), California Independent System Operator (CISO), and Pacifi-
Corp East (PACE). Table 2 lists their average CIs in 2023, which will
be used in the rest of this paper. We select these regions due to their
distinct energy mixes: QC relies heavily on renewable hydro and
wind energy, CISO incorporates renewable solar energy alongside
non-renewable natural gas, while PACE depends on non-renewable
sources like coal and natural gas. Overall, a higher fraction of re-
newable energy sources leads to a lower CI.

Embodied Carbon.Wemodel the embodied carbon (𝐶em) using
the approach in ACT [10], by considering the processor chip areas
and memory capacities from the specifications of RTX6000 Ada [30]
and T4 [29]. The total embodied carbon emissions of both GPU
types are listed in Table 1, which are close to a prior study on GPU
embodied carbon emissions [13]. The ACT approach discounts the
embodied carbon emissions by the ratio between total execution
time (𝑇 ) and GPU’s lifetime (𝐿𝑇 ), i.e., 𝑇 /𝐿𝑇 · 𝐶em. Therefore, a
prompt executed by the GPU that lasts 𝑡prompt generates the em-
bodied carbon emission of:

𝐶prompt,em =
𝑡prompt

LT
·𝐶em (3)

In this work, we assume a total GPU lifetime of 5 years – a typical
lifetime of datacenter components [10, 23].

Total Carbon Emissions. The total carbon emission consists
of embodied and operational carbon emissions. For a prompt that
executes 𝑡prompt time, its total carbon emission is:

𝐶prompt = 𝐶prompt,op +𝐶prompt,em

= 𝐸prompt ·𝐶𝐼 +
𝑡prompt

LT
𝐶em

(4)

Table 2: Carbon intensities (CIs) of three regions in 2023 [4].

Region QC CISO PACE

State/Province QC (Canada) CA (USA) WY, UT, AZ,
NM, ID (USA)

Main Sources Hydro, Wind Gas, Solar Coal, Gas
CI (g/kWh) 31 262 647
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Figure 4: Per-prompt carbon emission under the QC, CISO,
and PACE grids (1B-parameter LLaMA).

3.2 Carbon Emissions in Different Regions
Figure 4 shows the per-prompt embodied and operational carbon
emissions (log-scaled y-axis) with different batch sizes (x-axis) in
the three regions of Table 2: QC, CISO, and PACE.

Section 2.2 demonstrates that the newer RTX6000 Ada GPU is
more energy-efficient than the older T4 except when the batch
size is 1. When considering CI, the same conclusion remains true
within the same region. However, when comparing among regions,
the older T4 may yield a lower operational carbon emission if it is
located in a low-CI region. For instance, T4 in QC leads to lower
operational carbon emissions compared to RTX6000 Ada in CISO
or PACE, even when the batch size is 64. Especially after combining
the embodied carbon of T4, the total carbon emission of T4 is lower
than RTX6000 Ada in low-CI regions.

We observe that the embodied carbon, which is the bottom stack
in the log-scaled bar chart, is a relatively small fraction of total
carbon emissions across all regions. According to Equation 3, the
embodied carbon is independent of CI because it is determined
at manufacturing time. In contrast, the operational carbon varies
and depends on the grid carbon intensity, according to Equation 2.
Therefore, the operational carbon is lower when the same prompt
is executed in a region with a lower grid carbon intensity. For T4,
the embodied carbon comprises up to 19.7%, 2.8%, and 1.2% of the
total carbon emissions in QC, CISO, and PACE, respectively. For
RTX6000Ada, the embodied carbon comprises up to 30.7%, 5.0%, and
2.1% in the same regions. This disparity arises from RTX6000 Ada’s
newer CMOS technology, larger chip area, and higher onboard
memory capacity, resulting in significantly higher embodied carbon.
These results indicate that embodied carbon emissions carry greater
weight when GPUs are powered by grids with lower CIs.
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Figure 5: Per-token carbon emission in the prefill phase under
the CISO grid (1B parameters).
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Figure 6: Per-token carbon emission in the decode phase un-
der the CISO grid (1B-parameter LLaMA).

Takeaway 3: The balance between operational and embodied
carbon emissions varies, depending on the CI. In high-CI regions,
operational carbon makes up a significant portion of per-prompt
carbon emissions, while in low-CI regions, embodied carbon
becomes more prominent. Consequently, older and less powerful
GPUs may be preferable in low-CI regions, whereas newer and
more powerful GPUs are preferable in high-CI regions.

3.3 Carbon Emissions in Prefill/Decode Phases
We further study the operational and embodied carbon emissions
in the prefill and decode phases of the 1B parameter version. We
use the QC’s CI value to calculate the operational carbon emissions.

Figure 5 depicts the per-token carbon emissions (g) in the prefill
phase that consists of embodied (bottom stack) and operational
(upper stack) carbon emissions, respectively. Overall, the result is
similar to the per-token energy numbers in Figure 2b. However,
when considering embodied carbon, the optimal batch size for
minimizing carbon emissions on RTX6000 Ada varies. A batch size
of 32 leads to the lowest per-token carbon emissions (0.18 µg/token),
while a batch size of 16 consumes the lowest energy but does not
achieve the lowest per-token carbon emission (0.19 µg/token).

Similarly, Figure 6 shows the per-token carbon emissions (g) in
the decode phase. The result follows the same trend as the per-token
energy numbers in Figure 3b with a smaller difference between T4
and RTX6000 Ada due to T4’s lower embodied carbon emissions.
We expect that for regions with lower CIs than QC (e.g., those
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Figure 7: Embodied carbon emissions of T4 GPU under dif-
ferent expected lifetimes (batch size of 1).

powered by 100% renewable energy), older GPUs like T4 could po-
tentially yield even lower total carbon emissions, provided latency
requirements are met, owing to their lower embodied carbon.

Takeaway 4: Energy efficiency is not equivalent to carbon effi-
ciency. To quantify environmental impacts, carbon-based metrics
are more suitable than energy-based metrics. Factoring in em-
bodied carbon emissions yields different optimal configurations
compared to those that do not. Simultaneously accounting for
both embodied and operational carbon reveals more optimization
opportunities than considering either alone.

3.4 Impact of Extending GPU Lifetime
The previous analysis assumes a GPU lifespan of 5 years, which is
typical for datacenter server components, as discussed in Section 3.1.
Figure 7 depicts the anticipated percentage of embodied carbon
emissions over the total per-token carbon emissions (y-axis) by
sweeping the lifetime of the older T4 GPU from 4 to 8 years (x-axis)
in different regions. We observe that a reduced lifetime increases
the percentage of embodied carbon emissions, while an increased
lifetime reduces this percentage, as it is amortized over a longer time
span. In regions with lower CIs, this increase is more prominent
as embodied carbon emissions occupy a large fraction of the total
carbon emissions. The same trend holds true for the 1B, 3B, and
7B parameter models, except that the embodied carbon emissions
take up a lower percentage in larger models, as they are more
compute-intensive and lead to more operational carbon emissions.

Takeaway 5: Extending the lifetime of GPUs results in lower
embodied carbon emissions, as they are amortized over a longer
duration. This decrease in embodied carbon emissions from using
older GPUs is particularly prominent in regions with lower CIs.

4 Future Directions
In this section, we discuss future directions based on the findings
and insights from this work.

DesigningML software-hardware infrastructurewith long-
term sustainability. Latest-generation GPUs and ML accelerators
are often in shortage. Our study has shown that old GPUs can be
usable in many scenarios and may lead to even lower total carbon
emissions, making old hardware reuse a viable approach to bridge
the gap between the demand and limited supplies of new GPUs.
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When designing hardware infrastructure for LLMs, it is critical to
keep the whole lifetime in consideration, rather than optimizing for
the current, specific applications. For example, the memory capac-
ity can be a deal-breaker – latest LLMs do not fit into older GPUs
with small onboard memory; an awareness of interconnect and
extensibility can help improve the lifespan of these ML accelerators.
On the other hand, to better leverage old GPUs or ML accelerators,
we envision optimizations for old platforms throughout the LLM
software stack, from LLM algorithms, to runtimes, to the ML com-
piler level. Together, we expect efforts in these directions to pave
the way to achieve longevity in ML infrastructure.

Characterization of diverse LLM hardware platforms. This
work focuses on GPUs, the dominant processors for LLM. As de-
mand for ML infrastructure rises, particularly with the widespread
adoption of LLMs, datacenters are increasingly integrating spe-
cialized ML accelerators, such as TPUs in Google cloud [8], MTIA
accelerators in Meta cloud [20], and Trainum in AWS [1]. These
ML accelerators possess distinct performance, energy consumption,
and embodied carbon compositions compared to GPUs. Therefore,
fully understanding the performance and carbon emission tradeoffs
of specialized ML accelerators is critical to achieving the sustainabil-
ity of LLM serving in the clouds. Moving forward, we anticipate the
development of profiling frameworks tailored to assess the carbon
emissions of diverse GPUs and ML accelerators.

CI-directed LLM serving. Our study has shown that the oper-
ational carbon emissions of LLM serving largely depend on the CI.
When the CI is high, the operational carbon emissions dominate
the total carbon emissions. Conversely, in cases of low CI, the em-
bodied carbon emissions have a higher weight, making the use of
older GPUs more beneficial. Prior work has demonstrated signifi-
cant variability in carbon intensity across both temporal and spatial
scales, as renewable energy sources are intermittent [17, 18, 38]. The
flexibility in workload execution and carbon intensities presents
opportunities for datacenter providers and users to schedule LLM
workloads on GPUs that best match the current carbon intensity
levels. Further, CI predictions [18, 19] can work collaboratively
with the CI-directed scheduling strategy to make early scheduling
decisions for LLM workloads and infrastructure.

Sustainable LLM training.While our focus lies on LLM serv-
ing, there is considerable potential for sustainable LLM training.
Training LLMs is highly compute-demanding. For instance, Google
trained their 540B-parameter PaLM model using 6144 TPU v4’s[3].
Hence, there’s a pressing need to reduce the massive operational
carbon emissions of LLM training. Two directions can be explored.
First, unlike latency-critical LLM serving, LLM training offers flexi-
bility as it lacks strict deadlines, allowing for easy workload shifting
to periods and regions with lower carbon intensity. Second, in fine-
tuning scenarios that are less compute-intensive [5, 36], older and
lower-end GPUs/accelerators can be better utilized for such tasks.

5 Conclusions
Serving LLMs on a large scale results in significant environmental
impacts. This work studies both operational and embodied carbon
emissions of LLaMA across various model parameter sizes and
batch sizes using two Nvidia GPU types: RTX6000 Ada and T4. Our
findings indicate several optimization opportunities for reducing

both operational and embodied carbon emissions for LLM serving.
We hope this work inspires system researchers and developers
to consider environmental impacts for building next-generation
sustainable LLM serving systems.
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