
A Sleep Study for ISP Networks:
Evaluating Link Sleeping on Real World Data

Lukas Röllin∗
ETH Zürich

roellinl@ethz.ch

Romain Jacob∗
ETH Zürich

jacobr@ethz.ch

Laurent Vanbever∗
ETH Zürich

lvanbever@ethz.ch

ABSTRACT
Turning off under-utilized network links is a promising energy-
saving technique. In this paper, we present Hypnos, a link sleeping
system targeted at low-utilization wired networks and assess its
efficiency using real-world data from two European ISPs. In those
two case studies, we find that Hypnos can turn off more than a
third of all links without congesting the network. This confirms
the promise of link sleeping in low-utilization networks.

CCS CONCEPTS
• Networks→ Physical links; • Hardware→ Power estimation
and optimization; • General and reference→ Empirical studies.

KEYWORDS
Sustainable Networking, Link Sleeping

ACM Reference Format:
Lukas Röllin, Romain Jacob, and Laurent Vanbever. 2024. A Sleep Study for
ISP Networks: Evaluating Link Sleeping on Real World Data. In Proceedings
of 3rd Workshop on Sustainable Computer Systems (HotCarbon’24). ACM,
New York, NY, USA, 8 pages.

1 INTRODUCTION
In recent years, transceivers have increased in both capacity and
power demand. Energy efficiency improves when transceivers are
at 100% utilization [16], but, in practice, network links are often
underutilized, even in datacenter networks [11]. Unlike servers, to-
day’s wired networks do not reduce their power draw by a lot when
the utilization is low [15]. As a result, [11] suggests the network
could make up around 20% of the IT power in a datacenter. This
fraction is likely much larger in low-loaded networks such as ISPs.
Hence, one could achieve important energy savings by improving
energy proportionality in wired networks.

Energy proportionality is well-studied topic in the networking
literature. In short, there are two classes of approaches: sleeping, i.e.,
turning things off whenever possible, or rate adaptation, i.e., setting
the links to lower bitrates [20]. Rate adaptation is potentially more
practical as it does not affect the routing topology; however, the
power savings are limited by the fixed power cost to keep the link
up, which sometimes dominates the total port power [15]. Besides,

∗The CRediT statement for this work is available in Appendix A.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotCarbon’24, July 9, 2024, Santa Cruz, CA
© 2024 Copyright held by the owner/author(s).

not all transceivers and network devices support multiple bitrates,
which limits the generality of the approach.

In this paper, we focus on link sleeping, i.e., turning links off.
In a prior poster [24], we observed that transceivers can take multi-
ple seconds to turn on and off. This renders sleeping at the traffic
scale (as suggested in [20]) unfeasible. However, we argued one
could still put links to sleep at longer timescales (e.g., a couple of
times per day) and proposed a first system prototype. This system
performs four main functions:

(1) Collect network state information
(2) Select links to put to sleep
(3) Turn links off
(4) Wake links up on demand

Intuitively, the potential savings from sleeping strongly depend
on the network load and degree of connectivity. Moreover, one may
be more or less aggressive in the selection of links to put to sleep;
turning more links off improves energy savings but is more likely
to create congestion events on the remaining links. The likelihood
of creating congestion depends on how stable the traffic demand is;
the more bursty it is, the likelier it is the system makes “mistakes,”
i.e., it turned off links that would have avoided congestion.

[24] described a first prototype but lacked a fundamental part
in its evaluation: without access to real-world traffic and topology
information, it could not assess how efficient the system would be
at putting links to sleep; i.e., how many links would it turn off, and
how often would sleeping decisions lead to congestion?

This paper fills this gap.We present a refined link sleeping system
called Hypnos and evaluate its efficiency on real-world data from
two ISPs. We show that, despite its simple logic, Hypnos is very
efficient; more specifically,

• Hypnos turns off more than a third of links in two real-world
case study of lowly-loaded networks; (§ 3.4)

• it does so without causing congestion; (§ 3.4)
• it adapts well to high-load scenarios; (§ 3.5, § 3.8)
• it can be configured to maintain link failure resilience. (§ 3.6)

2 HYPNOS
2.1 Overall Design
Hypnos aims to put as many links to sleep as possible without
disrupting the network. In other words, it has three objectives.

• It must not disconnect the network by putting links to sleep.
• It must decide which links to put to sleep while minimizing
traffic redirection and congestion.

• If congestion happens, it must react quickly and turn links
back on to resolve the congestion.

https://orcid.org/0009-0005-0720-5134
https://orcid.org/0000-0002-2218-5750
https://orcid.org/0000-0003-1455-4381
https://credit.niso.org/


HotCarbon’24, July 9, 2024, Santa Cruz, CA Lukas Röllin, Romain Jacob, and Laurent Vanbever

While we aim to set as many links to sleep and keep them asleep
for as long as possible, avoiding congestion takes priority. Hypnos’
four main functions are described below and illustrated in Fig. 1.

(1) Collecting network state. One key design choice is deciding
whether one link can be safely turned off. To know exactly where
the current trafficwould be re-routed, onewould need the flow-level
traffic matrix and complete routing state, which is very challeng-
ing to collect and process in real-time. Instead, Hypnos relies on
a heuristic based on link loads (Fig. 1i), which are already com-
monly collected today at five-minute granularity via SNMP, similar
monitoring protocols. Link loads can also be collected e.g., via the
OSPF TE Metric Extensions (RFC 7471) or estimated using tools
like sFlow [22] or NetFlow [5].

(2) Selecting links to put to sleep. Link loads are aggregated to a
centralized controller, which selects the links to turn off (Fig. 1ii).
Hypnos uses a centralized controller to avoid accidental network
partitions; the controller always knows which links are asleep and
which must stay up to keep the network connected. In a decentral-
ized system, guaranteeing connectivity becomes non-trivial.

Hypnos sets the total volume of traffic allowed to be rerouted
with a reroute budget that lets the operator tune the acceptable
amount of traffic moved to a different path due to sleeping.

(3) Turning links off. To limit traffic disruption, Hypnos turns
links off in two stages: First, it increases the IGP link weight to
drain all traffic from the link; then, if no congestion is observed on
the other links, Hypnos turns the link off (Fig. 1iii).

(4) Waking up the network. Since avoiding congestion is priori-
tized over saving energy, Hypnos uses a conservative wake-up logic:
if one of the network links becomes congested (Fig. 1iv), Hypnos
immediately triggers the wake-up of all sleeping links (Fig. 1v).

2.2 Sleeping Decision Algorithm
The link sleeping decision algorithm is the core of Hypnos. It pro-
ceeds in three steps:

• defining sleeping link candidates;
• sorting candidates by increasing load;
• iteratively turning candidates off while checking
connectivity and rerouting constraints.

To define link candidates, Hypnos checks all the link loads of the
routers connected to a given link. As explained in § 2.1, we cannot
easily know where the link traffic would be rerouted, so Hypnos
uses the following heuristic. Take one candidate link and assume
all of its traffic would be rerouted via the highest-loaded link on
the same router; if that creates congestion, disregard the link as a
sleeping candidate. Then, iterate over all links.

The second step sorts all candidate links by the traffic volume
they carry, in bits per second. Using traffic volume instead of utiliza-
tion (in %) is important in networks with different link capacities:
turning off a 100G link at 1% results in a lot more rerouting than
a 1G link at 50% utilization. Hence, Hypnos indirectly prioritizes
turning off low-capacity links.

Finally, Hypnos iterates over the link candidates. It first checks
that turning off the current candidate does not disconnect the net-
work once accounting for the already turned-off links. If not, it

then checks if there is enough reroute budget left for that link.
The algorithm stops when one of the conditions no longer holds.

In addition, there is one special case that the algorithm han-
dles first: Two routers are sometimes connected via multiple links,
known as a bundle. Bundles are special because if one link is turned
off, the link traffic is guaranteed to be rerouted to the remaining
links from the bundle. Thus, Hypnos optimizes the sleeping of bun-
dles by aggregating the bundle traffic over as few links as necessary
to carry that traffic and putting all other links to sleep. Then, it
aggregates the remaining links from the bundle as one virtual link
and runs the link sleeping decision algorithm described above.1

3 EVALUATION
We now thoroughly evaluate how efficient Hypnos is at putting
links to sleep in realistic settings; i.e., how many links would it turn
off, and how often would sleeping decisions lead to congestion?

Our ISP dataset (§ 3.1 [14]) and complete evaluation code [23]
are both publicly available.

3.1 Dataset
Before diving into the evaluation, we present a short overview of
the topologies we use to evaluate Hypnos’ algorithm (Table 1).

Table 1: Overview of the evaluation’s topologies

Dataset Nodes Links Avg. link
load

Avg. node
degree

Switch 145 238 2.1% 3.28
SURF 462 745 1.2% 3.22
Repetita [9] (avg) 38.9 54.2 32.5% 2.64

We obtained the topology, IGPweights, and link load information
from the production network of two ISPs: Switch (CH) and SURF
(NL), which are both National Research and Education Networks.
For our evaluation, we use the link load information of their internal
links at a granularity of five-minute intervals.

To test against a more diverse set of topologies, we also use
Repetita [9]: a collection of real topologies and synthetic traffic ma-
trices that is meant to compare traffic engineering (TE) algorithms.
Since it is used for TE algorithms, the average link load is much
higher than for the ISP networks, making it almost impossible to
turn any link off. The evaluation on Repetita aims to show whether
Hypnos creates problems in high-load scenarios.

Finally, we also use scaled versions of the traffic scenarios above.
We scale the traffic matrix down for Repetita and scale up for the
ISPs. For up-scaling, we set a cap on individual link loads to 70%.

3.2 Extracting the Traffic Matrix
Hypnos uses only network link loads as inputs (see § 2). However,
to evaluate whether Hypnos creates congestion, we need the traf-
fic matrix to compute accurately where traffic gets rerouted. To
obtain this data, we use a technique called tomogravity [29] that
approximates traffic matrices from the link loads.

1Conceptually, that is similar to performing rate adaptation at the bundle level, where
the rate is adapted by selecting a subset of links between two nodes, rather than
changing the physical layer.

https://www.rfc-editor.org/rfc/rfc7471.html


A Sleep Study for ISP Networks HotCarbon’24, July 9, 2024, Santa Cruz, CA

Medium LoadLow Load High Load Wake up messagesSleep Candidate Link asleep

C

(i) Collect link loads

C

(ii) Select links to turn off

C

(iii) Turn off links

C

(iv) Wake up

C

(v) Network awake

Figure 1: Visual representation of steps Hypnos performs to turn off and wake up the network

As the tomogravity method scales quadratically with the number
of links, it became a bottleneck for our evaluation of SURF, which
is much larger than Switch (Table 1). Thus, our evaluation uses
75 days of data for Switch but only 14 days for SURF. Note that
the bottleneck comes from the evaluation needs, not from Hypnos.
Running on a single core, Hypnos derives the list of links to turn
off in less than 300ms for Switch and less than 3s for SURF.

3.3 Metrics
This paper focuses on Hypnos’ algorithm for selecting links to
put to sleep. Thus, the main performance metric we consider is
the number of links that Hypnos turns off. This metric is upper
bounded by the size of a network’s spanning tree, since we want to
keep the network connected. Therefore, the maximum number of
links that Hypnos can turn off is 94 for Switch and 284 for SURF.

Conversely, Hypnos can create congestion in a network in two
ways. The first case is when the link sleeping heuristic makes a
bad decision, and too much traffic gets rerouted on a link that
becomes congested. This can happen because the heuristic takes
a local view on link loads (§ 2.1) while turning a link off can have
global effects on routing. The second case is when turning a link
off causes congestion on the future traffic demand; i.e., when the
demand changes significantly. This is a generic problem for any
scheme that does not know nor predict future demands.

We measure Hypnos’ negative impact as the number of 5-minute
intervals where it leads tomild congestion (over 80%) or severe (over
100%) on at least one of the network links. Once mild congestion
is detected, Hypnos wakes up the network immediately to avoid
severe congestion. The threshold for “mild” congestion must be set
high enough to avoid unnecessarily waking up the network but
low enough to leave time to turn the links back on before severe
congestion. We set the threshold for “mild” congestion somewhat
arbitrarily as we have no information about fine-grained traffic load
in the network nor on the time required to wake up the network.

3.4 Performance on ISP Networks
How many links does Hypnos turn off? Fig. 2 shows the mean

number of links that can be turned off over the entire dataset. When
Hypnos creates congestion in one 5-minute interval, we count the
number of links put to sleep as zero for that interval since the entire
network is being woken up.

For Switch, Hypnos turns off 85 links on average, which is 36% of
the network’s links (Fig. 2a). As expected, when scaling the traffic
up, the savings go down; but even at ten times the traffic, Hypnos

1 2 5 10
65

70

75

80

85

Scale

Links asleep % of links

28

32

36

(a) Switch

1 2 5 10

250

260

270

280

Scale

Links asleep % of links

34

36

38

(b) SURF

Figure 2: Hypnos turns off more than 30% of the links, even
when we artificially scale up the traffic load.

still turns off around 67 links (28%). This is because, in our case
studies, many links carry almost no traffic at all; thus, those links
can still be turned off after scaling the traffic by 10x. The results
are similar for SURF (Fig. 2b).

Does Hypnos adapt to changing load conditions? Fig. 3 shows
that Hypnos’ algorithm adapts nicely to the daily and weekly load
patterns seen in the network and adjusts the number of links that
can be turned off accordingly. Notably, we can see that for Switch,
the number of links we can turn off increases, this is due to new
links becoming available during the interval.

Dec 31
2023

Jan 14
2024

Jan 28 Feb 11 Feb 25 Mar 10

75

80

85

90

95

32
34
36
38

Number of links turned off % of links

(a) Switch

Apr 4
2024

Apr 7 Apr 10 Apr 13
260

270

280

35

36

37

38
Number of links turned off % of links

(b) SURF

Figure 3: Hypnos adapts to daily and weekly load patterns.



HotCarbon’24, July 9, 2024, Santa Cruz, CA Lukas Röllin, Romain Jacob, and Laurent Vanbever

How stable is the list of sleeping links? Even if Hypnos limits
the volume of rerouted traffic, one does not want links flapping
on and off all the time. Fig. 4 shows the percentage of links that
turn on or off in every timestep for SURF. We find that most of the
278 sleeping links stay asleep, and only around 12% of those have
to change their state. We observe similar results for Switch (not
shown), where around 10% of links change their state between two
intervals. This shows that most links remain stable; the routing
protocol needs to handle only a few link state changes in every
five-minute interval.

Apr 4
2024

Apr 7 Apr 10 Apr 13

10

15

20

Link changes Moving average

Link changes in %

Figure 4: Only a fraction of links change their state between
intervals, reducing the amount of rerouting that is necessary.

Which links are put to sleep? Since we have links with different
capacities, one might expect Hypnos’ algorithm to turn off only
the low-capacity ones. We found that this is not the case; as shown
in Fig. 5, Hypnos also turns off high-capacity links when possible.
For Switch, it turns off one out of the six 400 Gbps links on average
without creating congestion. The results are similar for SURF.2

1 10 100 400
0

40

80

120

160

All links

Link capacity [Gbit/s]

Number of links

(a) Switch

10 20 100 200 400
0

150

300

450

600

Sleeping links

Link capacity [Gbit/s]

Number of links

(b) SURF

Figure 5: Hypnos does not just turn off low-capacity links.

How many mistakes does Hypnos make? Fig. 6 shows the number
of mistakes made by Hypnos as the load increases. We count one
mistake for each timestep where mild (blue lines) or severe (red
lines) congestion happens on one of the links. The plots also dis-
tinguish congestion events in the current (solid lines) and in the
next (dashed lines) timesteps. Congestion in the next timestep may
occur when traffic conditions change significantly in consecutive
timesteps. The bottom part of the plot shows the average reroute
budget given by Eq. (1).

With unscaled traffic, Hypnos never creates congestion in the
current timestep. A few times, traffic demand changes sufficiently
during the next five-minute interval to result in congestion. When

2One may note some unusual link speeds in Fig. 5b. This is because we do not have
data on each physical link for SURF; some of the link data are bundled, resulting in
capacities of, e.g., 20 Gbps, which are just two 10 Gbps interfaces bundled together.

the traffic changes more gradually, Hypnos avoid congestion by
waking up the network as the load builds up.

As expected, we see that increasing the network load makes
it harder for Hypnos to turn off links without making mistakes.
However, once we scale up the load even more, the number of
mistakes decreases again, as Hypnos can put fewer links to sleep.

0

50

100

1 2 5 10
0
5

10
15

Current load > 80%

Next load > 80%

Scale

Mistakes over 75 days

Reroute Budget [Gbps]

(a) Switch

0

1

2

1 2 5 10
0

50
100
150

Current load > 100%

Next load > 100%

Scale

Mistakes over 14 days

Reroute Budget [Gbps]

(b) SURF

Figure 6: Hypnos has to be more cautious for higher loads.

This behavior is partly due to the dynamic nature of the reroute
budget (§ 3.5). When the load in the network increases, we decrease
the reroute budget as it is easier to make mistakes at higher loads.
For Switch, it looks like the decrease does not happen fast enough,
so we have more mistakes at scale 5 than at scale 10. This result
suggests that it might be possible to tune the reroute budget to
avoid creating congestion regardless of the load.

3.5 Reroute budget
The reroute budget is a key parameter of Hypnos. If we set the
budget too low, there are no savings because Hypnos has no leeway
to turn any links off. If we set it too high, Hypnos turns off too
many links and is more likely to cause congestion in the network.

In this paper, we set the reroute budget as follows.

reroute_budget =
sum_link_capacity

250
∗ 0.0001
network_util2

(1)

The first term of the formula estimates the order of magnitude of
traffic the network experiences. A reroute budget of 10 Gbit might
be acceptable for a network with terabits of traffic but is probably
not ideal for a network only with a few gigabits of traffic.

The second term captures the network load; we want the reroute
budget to be small if the load is high and vice versa. If the network’s
average network utilization is 1%, the second factor becomes 1.

The reroute budget defined in Eq. (1) is not meant to be optimal;
we found it to work well for our case studies, but it might not work
in other scenarios.

Fig. 7 shows how Hypnos behaves if we scale up or down the
reroute budget. For Switch, we can clearly see that increasing the
budget causes Hypnos to make many more mistakes while reducing
it limits the savings. Since we wake up the network anytime we
make a mistake, the savings also decrease with higher reroute
budgets. Interestingly, for SURF, we only see similar behavior when



A Sleep Study for ISP Networks HotCarbon’24, July 9, 2024, Santa Cruz, CA

reducing the reroute budget; when increasing the reroute budget,
nothing really changes. We believe this is due to the lower load
of SURF, which means the algorithm is not limited by the reroute
budget but by the connectivity constraint.

0.01 0.1 1 10 100

70

75

80

85

90

0k

3k

6k

9k

12k

Links asleep

Reroute Scale

Links asleep Mistakes

(a) Switch

0.01 0.1 1 10 100

260

270

280

290

0

1

2

3

Mistakes

Reroute Scale

Links asleep Mistakes

(b) SURF

Figure 7: Switch is more sensitive to budget changes.

It is not clear how to optimally set the reroute budget for a given
network and traffic load. Currently, the simplest approach is to
simulate the sleep decision algorithm’s behavior over common load
scenarios and tune the reroute budget accordingly.

3.6 Two connectedness
Until now, we only considered that the network should remain
connected. Since the traffic load is very low (Table 1), Hypnos
almost reduces the active topology to a spanning tree. This might
be considered an overly aggressive sleeping strategy, as any failure
could momentarily disconnect the network.

Therefore, we also evaluate a version of Hypnos that aims to keep
the network 2-connected at all times. However, since Switch and
SURF networks are not 2-connected to begin with, we constraint
Hypnos to keep the largest component of the network 2-connected.
The results are summarized in Table 2.

Table 2: Hypnos can still turn some links off even with a
2-connectedness constraint.

Constraint 1-connected (default) 2-connected

Switch 85 (36%) 43 (18%)
SURF 280 (38%) 52 (7%)

For Switch, enforcing 2-connectedness reduces the number of
sleeping links from 85 down to 43 and, for SURF, from 280 to 52
(Table 2). Thus, even with a 2-connectedness constraint, Hypnos
can still turn off a few percent of the network links.

If the time to react to failures is relaxed we can even provide
both high savings and “delayed” 2-connectedness. Since all of the
links are still there but just turned off, one can instruct the system
to wake up the network in case of a failure. Then the network can
reconnect itself within the time it takes to wake up the interfaces.
Of course, it is only possible to reconnect the network if the awake
topology was 2-connected to begin with. In previous work [24], we

have shown that the interface wake-up time, depending on its type,
is in the order of a few seconds to a few 10s of seconds.

3.7 Power savings
Ultimately, Hypnos aims to save energy. Modeling the power drawn
by routers is not trivial [1, 13, 19, 26, 27]. The power savings from
link sleeping are hard to estimate because turning off a port affects
many subsystems (transceivers, DSPs, SerDes, etc.). To date, there
are no fine-grained power models available for modern routers.

However, we can approximate the potential gains on transceiver
power rather easily. Table 3 lists datasheet power numbers for
different speeds of optical long-range (LR) transceivers.3

Table 3: Approximate power numbers for LR transceivers

Capacity 1G 10G 100G 400G

Power 1W 1W 4W 10.5W

Multiplying the power numbers from Table 3 with the number
and types of links that Hypnos turns off (Fig. 5), we find that Switch
and SURF could save on average 307W and 943W on transceiver
power, respectively. This translates into energy savings of 2.7MWh
and 8.3MWh per year, respectively.

3.8 Performance on Repetita
To show that Hypnos is not overfitted to our ISP case studies, we
evaluate its performance on Repetita [9], which provides around 250
different test scenarios. It consists of real network topologies with
synthetic traffic matrices intended to benchmark traffic engineer-
ing (TE) algorithms. For our evaluation, we let Hypnos’ algorithm
run on all topologies and traffic matrices to determine how many
links can be turned off and, more importantly, how often sleeping
is causing congestion.

Table 4:Hypnos saves little but does no harmunder high load.

Scale Avg. link
load

Links
turned off

Link loads
over 80%

Link loads
over 100%

10% 3.2% 7.25 0 0
50% 16.2% 1.37 0 0
100% 32.5% 0.53 0 0

We find that for all the topologies, Hypnos does not make any
mistakes (Table 4). Hypnos does not cause any additional congestion
in the network, even though the dataset provided is specifically
highly loaded to allow for comparing traffic engineering algorithms
(Table 1: Repetita’s average load is about 15 times higher than that
of Switch). While there is not much saving possible at those loads,4
Hypnos adapts well to high loads and does not cause problems.

3LR transceivers are capable of transmitting up to 10km. We use the power numbers of
Flexoptics LR transceivers [7] because they are the most common type of transceiver
used in Switch.
4Another reason for the smaller savings is that many of the networks in Repetita are
not well connected, so there is not as much potential to turn links off. Even without
any traffic, the maximum number of links one could turn off is 16.3 out of 54.2.



HotCarbon’24, July 9, 2024, Santa Cruz, CA Lukas Röllin, Romain Jacob, and Laurent Vanbever

4 RELATEDWORK
Putting network links to sleep to save energy is an old idea, pop-
ularized by Gupta and Singh in 2003 [10] and then analytically
studied by Nedevschi et al. [20]. A few years later, ElasticTree [12]
applied link sleeping to data center networks; the key insight there
was that one can leverage the symmetrical topology of fat trees to
simplify the optimization problem of deciding which links can be
safely turned off. While promising, this line of work suffers from a
fundamental practical limitation: link sleeping at traffic timescales
is made unfeasible by the time required to turn links back up, which
is still measured in seconds today [24].

The other main approach for energy savings is rate adaptation.
One method, also studied in [20], is to change the physical layer
standard used (e.g., setting a 10Gbps port to run at 1Gbps). This
technique, practically explored in [15], is interesting as it does not
change the network topology as link sleeping does. However, the
potential savings are more limited in today’s network as only a
few link speeds exist, and rate adaptation is only possible if both
link endpoints support the same speeds. Another rate adaptation
method is to opportunistically throttle the link, as popularised by
the Energy Efficient Ethernet standard (EEE or IEEE 802.3az, [4]).
EEE essentially works by disabling the SerDes for short intervals
without traffic; this approach no longer works for optical commu-
nication, as the light has to stay “on” all the time, leading to EEE’s
obsolescence. In the optical domain, RADWAN [25] explores new
ways of implementing rate adaptation, though the work aims to
maximize bandwidth, not energy savings. The way Hypnos handles
bundled links (§ 2.2) can be seen as a form of rate adaptation.

Many works suggested integrating sleeping into the IGP proto-
cols [2, 6] or as part of the objective function of a traffic engineering
problem [3, 3, 17, 18, 21, 28]. Those prior works are very similar
to Hypnos in spirit, and all share one limitation: realistically esti-
mating the potential energy savings is impossible without accurate
power models. We know what can be turned off for a decade, but
we still do not know whether the energy savings are worth it—but
we are working on it! Hypnos differentiates itself by its focus on
practicality; e.g., its design assumes realistic wake-up times and
does not require modifying existing routing protocols.

Finally, Hypnos avoids packet drops when turning links off by
draining the links first. This paper does not detail this point as it is
a well-understood problem [8]. In essence, one can guarantee that
no micro-loops occur by incrementally changing IGP link weights,
which takes time. This is not a major concern for Hypnos, as it is
designed to turn links off at large timescales (minutes or hours).

5 CONCLUSION AND FUTUREWORK
With this paper, we confirm that, in lowly loaded networks such as
ISPs, it is possible to turn off a large number of links (§ 3.4 : >30%).
We show that a simple heuristic (§ 2.2) to select the links to put
to sleep appears good enough to avoid creating congestion on
realistic network topologies and traffic demands. We materialize
these observations with a link sleeping system prototype called
Hypnos. The potential energy savings from link sleeping appear
modest (§ 3.7), but we argue that any savings should be considered
if they come with minimal downsides.

Hypnos appears already very effective at putting networks to
sleep. However, several design points must be optimized further to
make link sleeping really too-easy-not-to-do-it.

Optimizing the reroute budget The reroute budget is a key pa-
rameter of Hypnos that must be tuned to a given network
capacity and traffic load (§ 3.5). How to optimally set it is an
important question that deserves further attention.

Predicting traffic demands Most of the congestion events trig-
gered by Hypnos result from assuming that traffic demands
remain constant over the next five-minute interval. It would
be natural to enhance the system with some mechanism to
predict future demands and/or learn from past mistakes.

Optimizing link state stability Currently, Hypnos starts every
link decision-making process anew; i.e., it does not consider
which links are already asleep. Because the algorithm is de-
terministic and the link loads are fairly stable in our case
studies, this leads to a few links changing state at each itera-
tion (Fig. 4). It should be straightforward to extend Hypnos
to minimize the number of state changes, which would help
make the system more practical.

Quantifying the latency cost In this paper, we only consider the
“cost” of link sleeping in terms of congestion events. However,
there can also be a latency cost for traffic that gets rerouted
along a longer path. Estimating the impact of sleeping on
latency is challenging and its practical relevance for ISP
traffic is unclear. Nonetheless, latency should be considered.

Optimizing the transient While this is beyond the scope of this
paper, an important aspect of a link sleeping system is man-
aging the transient network state; i.e., what happens while
links are being turned on or off. To turn off links we just need
to wait until the IGP has drained the link of traffic. When
turning a link back on, we try to resolve an issue as quickly
as possible, which is time-sensitive. In [24], we showed that
transceivers can bottleneck the wake-up time of the network.
To improve the transient, one needs to look at improving
the turn-on time of transceivers.

Optimizing for power To date, we lack accurate models predict-
ing the effect of link sleeping on routers’ power demand;
deriving fine-grained network power models is part of our
ongoing research efforts. With such models, Hypnos could
be extended to turn off links that optimize power savings.

In short, we showed that link sleeping is feasible in real-world sce-
narios and worth future work to optimize its performance further.

ACKNOWLEDGMENTS
We would like to thank Simon Leinen from Switch and Marijke
Kaat and Edwin Verheul from SURF for their help in gathering the
topology and traffic data used in this study.

This work was supported by the ETH Future Computing Labo-
ratory (EFCL), financed by a donation from Huawei Technologies.



A Sleep Study for ISP Networks HotCarbon’24, July 9, 2024, Santa Cruz, CA

REFERENCES
[1] Jaewon Ahn and Hong-Shik Park. 2014. Measurement and Modeling the

Power Consumption of Router Interface. In 16th International Conference on
Advanced Communication Technology. 860–863. https://doi.org/10.1109/ICACT.
2014.6779082

[2] Aruna Prem Bianzino, Luca Chiaraviglio, Marco Mellia, and Jean-Louis Rougier.
2012. GRiDA: GReen Distributed Algorithm for Energy-Efficient IP Backbone
Networks. Computer Networks 56, 14 (Sept. 2012), 3219–3232. https://doi.org/10.
1016/j.comnet.2012.06.011

[3] Luca Chiaraviglio, Marco Mellia, and Fabio Neri. 2012. Minimizing ISP Network
Energy Cost: Formulation and Solutions. IEEE/ACM Transactions on Networking
20, 2 (April 2012), 463–476. https://doi.org/10.1109/TNET.2011.2161487

[4] Ken Christensen, Pedro Reviriego, Bruce Nordman, Michael Bennett, Mehrgan
Mostowfi, and Juan Antonio Maestro. 2010. IEEE 802.3az: The Road to Energy
Efficient Ethernet. IEEE Communications Magazine 48, 11 (Nov. 2010), 50–56.
https://doi.org/10.1109/MCOM.2010.5621967

[5] Benoît Claise. 2004. Cisco Systems NetFlow Services Export Version 9. Request for
Comments RFC 3954. Internet Engineering Task Force. https://doi.org/10.17487/
RFC3954

[6] M. D’Arienzo and S. P. Romano. 2016. GOSPF: An Energy Efficient Implementa-
tion of the OSPF Routing Protocol. Journal of Network and Computer Applications
75 (Nov. 2016), 110–127. https://doi.org/10.1016/j.jnca.2016.07.011

[7] FLEXOPTIX. 2024. FLEXOPTIX. https://www.flexoptix.net/
[8] P. Francois, M. Shand, and O. Bonaventure. 2007. Disruption Free Topology

Reconfiguration in OSPF Networks. In IEEE INFOCOM 2007 - 26th IEEE Interna-
tional Conference on Computer Communications. 89–97. https://doi.org/10.1109/
INFCOM.2007.19

[9] Steven Gay, Pierre Schaus, and Stefano Vissicchio. 2017. REPETITA: Repeatable
Experiments for Performance Evaluation of Traffic-Engineering Algorithms.
https://doi.org/10.48550/arXiv.1710.08665 arXiv:1710.08665 [cs]

[10] Maruti Gupta and Suresh Singh. 2003. Greening of the Internet. In Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM ’03). Association for Computing
Machinery, New York, NY, USA, 19–26. https://doi.org/10.1145/863955.863959

[11] Haiyang Han, Nikos Terzenidis, Dimitris Syrivelis, Arash F. Beldachi, George T.
Kanellos, Yigit Demir, Jie Gu, Srikanth Kandula, Nikos Pleros, Fabián Bustamante,
and Nikos Hardavellas. 2021. Energy-Proportional Data Center Network Archi-
tecture Through OS, Switch and Laser Co-design. https://doi.org/10.48550/arXiv.
2112.02083 arXiv:2112.02083 [cs]

[12] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet
Sharma, Sujata Banerjee, and Nick McKeown. 2010. ElasticTree: Saving Energy in
Data Center Networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI’10). USENIX Association, USA, 17.
https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/heller.pdf

[13] Helmut Hlavacs, Georges Da Costa, and Jean-Marc Pierson. 2009. Energy
Consumption of Residential and Professional Switches. In 2009 International
Conference on Computational Science and Engineering, Vol. 1. 240–246. https:
//doi.org/10.1109/CSE.2009.244

[14] Romain Jacob. 2024. ISP Topology and Traffic Dataset. https://doi.org/10.5281/
zenodo.12580396

[15] Romain Jacob, Jackie Lim, and Laurent Vanbever. 2023. Does Rate Adaptation at
Daily Timescales Make Sense?. In Proceedings of the 2nd Workshop on Sustainable
Computer Systems. ACM, Boston MA USA, 1–7. https://doi.org/10.1145/3604930.
3605713

[16] Itzik Kiselevsky. 2023. Evolution of Switches Power Consumption. https://eng.ox.
ac.uk/media/11vdkdtb/itzikk_evolution-of-switches-power-consumption.pdf

[17] Youcef Magnouche, Jérémie Leguay, and Feng Zeng. 2023. Safe Routing in
Energy-aware IP Networks. In 2023 19th International Conference on the Design
of Reliable Communication Networks (DRCN). IEEE, Vilanova i la Geltru, Spain,
1–8. https://doi.org/10.1109/DRCN57075.2023.10108152

[18] Priya Mahadevan, Sujata Banerjee, and Puneet Sharma. 2010. Energy Proportion-
ality of an Enterprise Network. In Proceedings of the First ACM SIGCOMM Work-
shop on Green Networking (Green Networking ’10). Association for Computing
Machinery, New York, NY, USA, 53–60. https://doi.org/10.1145/1851290.1851302

[19] Hakim Mellah and Brunilde Sansò. 2011. Routers vs Switches, How Much More
Power Do They Really Consume? ADatasheet Analysis. In 2011 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks. 1–6. https:
//doi.org/10.1109/WoWMoM.2011.5986484

[20] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. 2008. Reducing Network Energy Consumption via Sleeping and
Rate-Adaptation. In 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 08). https://www.usenix.org/conference/nsdi-08/reducing-
network-energy-consumption-sleeping-and-rate-adaptation

[21] Tian Pan, Xiaoyu Peng, Qianqian Shi, Zizheng Bian, Xingchen Lin, Enge Song,
Fuliang Li, Yang Xu, and Tao Huang. 2021. GreenTE.Ai: Power-Aware Traffic
Engineering via Deep Reinforcement Learning. In 2021 IEEE/ACM 29th Interna-
tional Symposium on Quality of Service (IWQOS). 1–6. https://doi.org/10.1109/

IWQOS52092.2021.9521281
[22] Sonia Panchen, Neil McKee, and Peter Phaal. 2001. InMon Corporation’s sFlow:

A Method for Monitoring Traffic in Switched and Routed Networks. Request for
Comments RFC 3176. Internet Engineering Task Force. https://doi.org/10.17487/
RFC3176

[23] Lukas Röllin. 2024. Nsg-Ethz/Hypnos: Release 1.0. Zenodo. https://doi.org/10.
5281/zenodo.12582811

[24] Lukas Röllin, Romain Jacob, and Laurent Vanbever. 2023. Poster: What Keeps
Your Network up at Night?. In Companion of the 19th International Conference on
Emerging Networking EXperiments and Technologies (CoNEXT 2023). Association
for Computing Machinery, New York, NY, USA, 59–60. https://doi.org/10.1145/
3624354.3630092

[25] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa
Gill. 2018. RADWAN: Rate Adaptive Wide Area Network. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). Association for Computing Machinery, New York, NY, USA,
547–560. https://doi.org/10.1145/3230543.3230570

[26] Arun Vishwanath, Kerry Hinton, Robert W. A. Ayre, and Rodney S. Tucker.
2014. Modeling Energy Consumption in High-Capacity Routers and Switches.
IEEE Journal on Selected Areas in Communications 32, 8 (Aug. 2014), 1524–1532.
https://doi.org/10.1109/JSAC.2014.2335312

[27] Lane Wigley. 2022. Assessing the Real-World Environmental Impact of
Routers. https://blogs.cisco.com/sp/assessing-the-real-world-environmental-
impact-of-routers

[28] Mingui Zhang, Cheng Yi, Bin Liu, and Beichuan Zhang. 2010. GreenTE: Power-
aware Traffic Engineering. In The 18th IEEE International Conference on Network
Protocols. 21–30. https://doi.org/10.1109/ICNP.2010.5762751

[29] Yin Zhang, Matthew Roughan, Nick Duffield, and Albert Greenberg. 2003. Fast
Accurate Computation of Large-Scale IP Traffic Matrices from Link Loads. ACM
SIGMETRICS Performance Evaluation Review 31, 1 (June 2003), 206–217. https:
//doi.org/10.1145/885651.781053

A CREDIT STATEMENT
This section lists the author’s contributions to this work. The con-
tributions are described using CRediT, the Contributor Roles Tax-
onomy, an ANSI/NISO standard.

All authors agree with this declaration of contributions.

Lukas Röllin 0009-0005-0720-5134 �

Data curation Supporting ´
Formal analysis Lead Ç
Investigation Lead Ç
Methodology Lead Ç
Software Lead Ç
Validation Equal '
Visualization Lead Ç
Writing – original draft Equal '
Writing – review & editing Lead Ç

Romain Jacob 0000-0002-2218-5750 �

Conceptualization Lead Ç
Data curation Lead Ç
Formal analysis Supporting ´
Funding acquisition Equal '
Investigation Supporting ´
Methodology Supporting ´
Project administration Lead Ç
Software Supporting ´
Supervision Lead Ç
Validation Equal '
Visualization Supporting ´
Writing – original draft Equal '
Writing – review & editing Supporting ´

https://doi.org/10.1109/ICACT.2014.6779082
https://doi.org/10.1109/ICACT.2014.6779082
https://doi.org/10.1016/j.comnet.2012.06.011
https://doi.org/10.1016/j.comnet.2012.06.011
https://doi.org/10.1109/TNET.2011.2161487
https://doi.org/10.1109/MCOM.2010.5621967
https://doi.org/10.17487/RFC3954
https://doi.org/10.17487/RFC3954
https://doi.org/10.1016/j.jnca.2016.07.011
https://www.flexoptix.net/
https://doi.org/10.1109/INFCOM.2007.19
https://doi.org/10.1109/INFCOM.2007.19
https://doi.org/10.48550/arXiv.1710.08665
https://arxiv.org/abs/1710.08665
https://doi.org/10.1145/863955.863959
https://doi.org/10.48550/arXiv.2112.02083
https://doi.org/10.48550/arXiv.2112.02083
https://arxiv.org/abs/2112.02083
https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/heller.pdf
https://doi.org/10.1109/CSE.2009.244
https://doi.org/10.1109/CSE.2009.244
https://doi.org/10.5281/zenodo.12580396
https://doi.org/10.5281/zenodo.12580396
https://doi.org/10.1145/3604930.3605713
https://doi.org/10.1145/3604930.3605713
https://eng.ox.ac.uk/media/11vdkdtb/itzikk_evolution-of-switches-power-consumption.pdf
https://eng.ox.ac.uk/media/11vdkdtb/itzikk_evolution-of-switches-power-consumption.pdf
https://doi.org/10.1109/DRCN57075.2023.10108152
https://doi.org/10.1145/1851290.1851302
https://doi.org/10.1109/WoWMoM.2011.5986484
https://doi.org/10.1109/WoWMoM.2011.5986484
https://www.usenix.org/conference/nsdi-08/reducing-network-energy-consumption-sleeping-and-rate-adaptation
https://www.usenix.org/conference/nsdi-08/reducing-network-energy-consumption-sleeping-and-rate-adaptation
https://doi.org/10.1109/IWQOS52092.2021.9521281
https://doi.org/10.1109/IWQOS52092.2021.9521281
https://doi.org/10.17487/RFC3176
https://doi.org/10.17487/RFC3176
https://doi.org/10.5281/zenodo.12582811
https://doi.org/10.5281/zenodo.12582811
https://doi.org/10.1145/3624354.3630092
https://doi.org/10.1145/3624354.3630092
https://doi.org/10.1145/3230543.3230570
https://doi.org/10.1109/JSAC.2014.2335312
https://blogs.cisco.com/sp/assessing-the-real-world-environmental-impact-of-routers
https://blogs.cisco.com/sp/assessing-the-real-world-environmental-impact-of-routers
https://doi.org/10.1109/ICNP.2010.5762751
https://doi.org/10.1145/885651.781053
https://doi.org/10.1145/885651.781053
https://credit.niso.org/
https://niso.org/
https://orcid.org/{0009-0005-0720-5134}
https://orcid.org/{0000-0002-2218-5750}


HotCarbon’24, July 9, 2024, Santa Cruz, CA Lukas Röllin, Romain Jacob, and Laurent Vanbever

Laurent Vanbever 0000-0003-1455-4381 �

Conceptualization Supporting ´
Funding acquisition Equal '
Methodology Supporting ´
Resources Lead Ç
Supervision Supporting ´
Writing – original draft Supporting ´

https://orcid.org/{0000-0003-1455-4381}

	Abstract
	1 Introduction
	2 Hypnos
	2.1 Overall Design
	2.2 Sleeping Decision Algorithm

	3 Evaluation
	3.1 Dataset
	3.2 Extracting the Traffic Matrix
	3.3 Metrics
	3.4 Performance on ISP Networks
	3.5 Reroute budget
	3.6 Two connectedness
	3.7 Power savings
	3.8 Performance on Repetita

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References
	A CRediT Statement

