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ABSTRACT
The rapid rise of generative AI (GenAI) technologies has brought
innovative video generation models like OpenAI’s Sora to the fore-
front, but these advancements come with significant sustainability
challenges due to their high carbon footprint. This paper presents
a carbon-centric case study on video generation, providing the
first systematic investigation into the environmental impact of this
technology. By analyzing Open-Sora, an open-source text-to-video
model inspired by OpenAI Sora, we identify the iterative diffusion
denoising process as the primary source of carbon emissions. Our
findings reveal that video generation applications are significantly
more carbon-demanding than text-based GenAI models and that
their carbon footprint is largely dictated by denoising step num-
ber, video resolution, and duration. To promote sustainability, we
propose integrating carbon-aware credit systems and encouraging
offline generation during high carbon intensity periods, offering a
foundation for environmentally friendly practices in GenAI.
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1 INTRODUCTION
Generative AI (GenAI) is experiencing a significant surge in popular-
ity. Following the launch of ChatGPT by OpenAI in November 2022,
which amassed one million users within just five days, large lan-
guage models (LLMs) that generate text responses to user prompts
have captivated major information technology companies. This
has sparked a trend of frequently released new LLMs, including
Meta Llama, Google Gemini, Anthropic Claude, Snowflake Arc-
tic, and IBM Granite. While LLM capabilities have grown tremen-
dously over the past year, OpenAI, as a leader in GenAI, announced
a revolutionary video generation model, Sora, in February 2024.
This model can transform user text prompts into highly realistic
videos [32]. As humans interact significantly with visual data along-
side natural language, the launch of OpenAI Sora is expected to
replicate the "ChatGPT moment" and ignite a wave of investment
in video-focused multimodal generative model development across
the technology industry.

As GenAI develops, the carbon emissions incurred in training
and deploying such models require urgent intervention, as these
workloads execute on integrated circuits that incur carbon emis-
sions both during manufacturing and operation when powered by
the grid. Notably, the energy consumption of global data centers
is projected to reach 1,000 TWh by 2026 [16] due to AI growth,
and the corresponding carbon emissions could account for 8% of
global emissions within a decade [12]. In this work, we are particu-
larly interested in the inference process, as inference is expected
to dominate the AI computing cycles [7, 27, 42]. Previous works
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battling each other as they sail inside a cup of coffee.

Generated Video

Text 
Encoder

DiT Blocks
Noise

Text Embeddings

Diffusion TransformerLLM

VAE 
Decoder

Figure 1: The process of video generation.

have investigated the carbon footprint of generative language mod-
els [7, 11, 26, 29], but they have distinctive architectures compared
to text-to-video models, and there is a lack of systematic effort in ad-
dressing the sustainability challenges in Sora-like video generation
applications.

As video generation is poised to become the next milestone ap-
plication of GenAI, we conduct a carbon-centric case study on this
emerging field. The contributions of this work can be summa-
rized as follows:

This work is the first to investigate the carbon footprint of video
generation applications.While text generation applications use an
autoregressive approach to generate text tokens, video generation
applications rely on diffusionmodels that iteratively denoise a latent
space video representation. By taking this first step, this work aims
to shed light on the sustainability challenges of video generation.

Our characterization provides operational insights for making
video generation services eco-friendly. Notably, video generation
applications are significantly more carbon-intensive than text gen-
eration, with the primary source of emissions stemming from it-
erative diffusion denoising. We examine the carbon footprint and
generation quality under various configurations of denoise step
number, resolution, and duration.

We offer insights from this study for video generation service
providers to integrate sustainability into their pricing models. Ser-
vice providers should establish a carbon-aware credit system to
incentivize environmentally friendly video generation practices.
Furthermore, encouraging users to opt for offline generation during
periods of high carbon intensity can significantly reduce emissions.

Next, we introduce the diffusion transformer-based video gener-
ation models and present our characterization details.

2 BACKGROUND AND METHODOLOGY
Video Generation Model Architecture. With the increasing
popularity of transformers [38] and latent diffusion [36], video
generation has widely adopted the diffusion transformer (DiT) [33]
architecture, which is more scalable than the traditional U-Net
architecture. The text-to-video generation process is illustrated
in Fig. 1. Here, user prompts are tokenized and encoded using a
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language model to create a noisy latent space representation. This
representation is then fed into the diffusion transformer, which
iteratively denoises it over a specified number of steps. Finally, a
variational autoencoder (VAE) decodes the latent representation
into video frames.

Carbon Footprint of Video Generation. The carbon footprint
measures the greenhouse gas emissions, primarily CO2, associated
with the production and operation of computer components. For
online applications, the carbon footprint comprises both embodied
carbon and operational carbon [13]. Embodied carbon refers to the
one-time emissions from manufacturing and packaging integrated
circuit components. When calculating the carbon footprint for each
video generation, the embodied carbon is proportionally allocated
by dividing the generation time by the overall lifespan of the de-
vice. Operational carbon is calculated by multiplying the carbon
intensity (gCO2/kWh) of the electricity grid by the energy used
in the datacenter to power the inference server. The total carbon
emissions associated with generating a video can be expressed as
follows:

𝐶𝑎𝑟𝑏𝑜𝑛 = 𝐸𝑛𝑒𝑟𝑔𝑦 · 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 +
𝑇gen

𝑇life
· 𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 (1)

where 𝑇gen and 𝑇life represent the generation time and device lifes-
pan, respectively. Note that this formulation assumes the hardware
is busy serving requests throughout its lifetime, which may not
always be true. However, one can adjust 𝑇life accordingly and such
formulation was used in existing application [18]. We model the
embodied carbon of hardware devices using ACT [12] and modify
the CarbonTracker [6] package to monitor the operational carbon.

Experiment Setup. Since OpenAI Sora is proprietary software,
several open-source projects have attempted to replicate its video
generation capabilities. Among them, we selected the Colossal-
AI Open-Sora [43] model due to its popularity and its training
similarity to Sora’s description. Other projects, such as Open-Sora-
Plan [23], are slower and currently lack multi-resolution/duration
generation support. We established the inference benchmark using
the latest Open-Sora v1.1.0 release on an NVIDIA A100 GPU (CUDA
12.1). To achieve optimal efficiency, we enabled FlashAttention [9]
and xFormers [24] for acceleration. For our video generation bench-
mark, we used all the prompts from the OpenAI Sora demo [32]
and Open-Sora examples.

3 CARBON FOOTPRINT ANALYSIS
In this section, we analyze the carbon footprint of video generation
applications to address a series of unexplored research questions (de-
noted as RQs). These questions aim to uncover the environmental
challenges associated with deploying video generation applications.
By empirically studying them, we derive insights and implications
for operating video generation services in an environmentally sus-
tainable manner.

RQ 1. How does embodied and operational carbon account for
the inference carbon footprint for video generation?

This research question helps us understand the contributions of
the manufacturing/packaging components and the inference server
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Figure 2: Carbon footprint when powered by the most com-
monly used energy sources in the US [3].

operation phase to the overall carbon footprint of the system. As
outlined in Sec. 2, the embodied carbon of video generation depends
solely on the time the request runs on the hardware as a fraction of
the device’s lifetime, while the operational carbon is determined by
the energy consumption during generation and the carbon intensity
of the grid. In this study, we assume a device lifetime of 5 years
when calculating embodied carbon and a datacenter power usage
efficiency (PUE) of 1.2 to calculate operational carbon, a typical
value for efficiently operated datacenters [31]. All carbon numbers
presented in this paper include both embodied and operational
carbon.

In Fig. 2, we quantify the carbon footprint of video generation
when running the service using various energy sources that col-
lectively account for over 97% of the electricity generated in the
US [3]. The carbon intensity of each energy source is derived from
ACT [12]. Our findings reveal that embodied carbon contributes
negligibly to the overall carbon footprint compared to operational
carbon. Even when the datacenter is powered by wind – the energy
source with the lowest carbon intensity – operational carbon is
5.4 times the embodied carbon, accounting for 84% of the overall
carbon footprint. When the system is powered by gas, the most
common fuel source for electricity in the US, embodied carbon
contributes only 0.4% to the carbon footprint of generating a video.

Insights and implications. The carbon footprint of video gen-
eration applications is predominated by its operational carbon,
which depends on the local grid’s carbon intensity. Therefore,
as the inference service provider, it is a sustainable practice to
deploy the application in datacenters powered by more renew-
able energy sources such as wind, nuclear, hydro, and solar. In
addition, it is worth deploying the video generation models on
hardware that costs more carbon to manufacture but has better
power efficiency (e.g., chips with more advanced lithography).

We have confirmed that the carbon footprint of video generation
is dictated by its operational carbon. However, understanding the
relative carbon emissions incurred during an inference request will
help us gauge how carbon-demanding video generation applica-
tions truly are. This topic is discussed next.

RQ 2. How does the carbon footprint of video generation com-
pare against text generation with a large language model
(LLM)?

Large Language Models (LLMs) have gained significant pop-
ularity, particularly in generative AI applications where the lan-
guage model iteratively generates output tokens based on an input
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Figure 3: Video generation is significantly more carbon-
demanding than text generation on LLMs. The shown ex-
ample generates 2-second videos at 240p resolution.

prompt. Here, we compare the inference carbon footprint of the
Open-Sora model against the Meta Llama2 13B model. We chose an
intermediate-sized Llama model with a memory footprint similar
to that of the Open-Sora model. Note that we did not use Llama3
as its 13B variant had not been released at the time of this work.
We understand this comparison can be dictated by the choice of
model and configurations, but we try to make these numbers more
representative by selecting popular workloads.

To evaluate the carbon footprint of the LLM, we used amixture of
representative language modeling datasets, including Alpaca [37],
GSM8K [8], MMLU [14], Natural Questions [22], ScienceQA [28],
and TriviaQA [17]. For video generation’s carbon footprint, we
generated 2-second videos at 240p resolution (we discuss the gen-
eration of longer videos at higher resolutions later in Sec. 3). A
carbon intensity of 100 gCO2/kWh is used in both cases. The goal
is to compare the effort required to generate a relatively short,
low-resolution video versus a text response to a prompt.

In Fig. 3 (a), we show the average carbon footprint per request
for language generation compared to video generation. The average
carbon used to generate a video is approximately 6× higher than
that required to generate a sequence of text tokens. For a more
comprehensive comparison of video generation versus text genera-
tion, Fig. 3 (b) provides a finer-grained analysis. Since videos are
composed of frames, we quantify the carbon emissions correspond-
ing to each frame. For text generation, responses are composed of
tokens before being decoded into text, so we quantify the carbon
emissions for generating each token (total inference carbon divided
by the number of tokens generated, averaged across all dataset
prompts). Fig. 3 (b) shows that the carbon per frame is about 78×
higher than the carbon per token, highlighting that video gener-
ation is much more carbon-intensive than text generation. While
extensive research has been conducted on the carbon efficiency of
LLMs [7, 11, 26], our characterization emphasizes a more urgent
need for sustainable practices in video generation.

Insights and implications. Generating videos consumes sig-
nificantly more carbon than generating text: the average car-
bon emission for a single 240p video frame is equivalent to
generating 78 text tokens with comparably sized video and text
generation models. As GenAI technologies advance towards
multi-modality, we expect video generation to become a major
contributor to the carbon footprint of GenAI in the future. There-
fore, we call for more research focused on carbon awareness
and sustainability in video generation applications.
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Figure 4: Carbon footprint of different phases of video gener-
ation when varying the number of diffusion denoising steps.

We have confirmed the carbon-demanding nature of video gen-
eration applications, but to identify the carbon bottlenecks, we
need a deeper understanding of the video generation process. As
introduced in Sec. 2, current state-of-the-art video generation ap-
plications use diffusion transformers that follow a general process:
(i) using a language model to encode the user prompt into a la-
tent space representation; (ii) gradually reversing the noise-adding
process (learned from training) through iterative denoising; and
(iii) converting the denoised latent space representation into video
via the decoder of a variational autoencoder (VAE). Next, we ex-
amine the carbon impact of each of these processes during video
generation.

RQ 3. How do the text encoding, diffusion denoising, and video
decoding phases account for the video generation carbon?

In our video generation benchmark, following the architecture
in Fig. 1, we use Google’s T5 v1.1 xxlarge model, which has approx-
imately 11 billion parameters, to encode the text prompt [35]. Note
that this LLM is used solely for text encoding, a different process
from text generation as discussed in RQ 2. For denoising, we uti-
lize Open-Sora’s spatial-temporal diffusion transformer (STDiT)
model, allowing the diffusion model to iteratively refine its under-
standing of the input data, gradually reducing noise and improving
signal fidelity. The number of denoise steps/iterations (typically
tens to hundreds) can be adjusted during inference. The decoder
is a variational autoencoder with KL loss [20] from the Hugging-
face Diffusers library. In this experiment, we continue generating
2-second videos at 240p resolution.

In Fig. 4, we first examine how much carbon footprint one diffu-
sion denoising step has compared to the LLM encoding and VAE
decoding phases. In Fig. 4 (a), we show that the carbon footprint
of a single diffusion denoising step is comparable to the combined
carbon footprint of the encoding and decoding phases. However,
since the model requires multiple denoising steps, we increase the
number of steps to 20 in Fig. 4 (b) and 40 in Fig. 4 (c). As the number
of steps increases, it becomes evident that the diffusion denoising
phase dominates the carbon footprint of video generation. Note that
40 denoising steps are considered small, as the Open-Sora model
defaults to using 100 steps. Yet, even with just 40 denoising steps,
97.3% of the carbon footprint of generating short, low-resolution
videos (2s, 240p) is already accounted for, rendering the encoding
and decoding carbon negligible. It’s worth noting that, even though
we encode the user prompt using an LLM, this process only con-
sumes about 60% of the carbon footprint of a single denoising step.
This is because the denoising process also heavily utilizes attention
operators that are widely used in language models. However, rather
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Figure 5: Carbon and video quality impact on adjusting the
number of diffusion denoising steps.

than applying attention to text tokens, the attention operators are
applied to the spatial and temporal features of the video.

Insights and implications. The carbon emissions of video
generation applications are dominated by the iterative diffusion
denoising phase, even when denoising is done in the latent
space. The length of the input prompt has almost no impact on
video generation carbon emissions, as the LLM text encoding
carbon footprint is negligible. Given that video generation has
a much larger carbon footprint than text generation, it would
be a carbon-friendly practice for service providers to refine
user prompts using language models before feeding them into
the video generation model. For example, OpenAI could pass
user prompts to GPT for text refinement, then feed them into
their Sora model for higher-quality generation with minimal
additional carbon emissions.

Now that we have identified the carbon bottleneck in diffusion
denoising, the number of denoising steps becomes a primary carbon
factor. However, as discussed in previous work, the number of
denoising steps (default is 100 in Open-Sora) is not a straightforward
parameter to configure due to its complex interaction with video
quality. Previous research has shown that a higher number of steps
generally leads to better image quality during image generation [41].
For the next research question, we investigate the impact of the
number of steps on Open-Sora’s carbon footprint and video quality.

RQ 4. How should we control the number of diffusion denoising
steps to account for both video quality and carbon emission?

Measuring carbon emissions can be done by evaluating the quan-
tities in Eq. 1. To assess video generation quality, we consider two
separate perspectives. First, we evaluate video quality without any
context – reflecting how realistic the video appears based on com-
mon sense. For instance, whether subjects flicker in the video. Sec-
ond, we assess how well the video aligns with the provided text
context. For instance, whether the video shows cats when users
request dogs.

To quantify these two properties, we modify VBench [15], a state-
of-the-art video quality benchmark collection.We selectMUSIQ [19]
to evaluate frame distortion in the video as a video quality proxy,
and ViCLIP [40], a video extension of the OpenAI CLIP score [34],
to measure the correlation between the generated video and the
original prompt. A higher score indicates higher generation quality
for both metrics. We acknowledge that these metrics can only serve
as proxies for certain aspects of the video, as judging video quality
is inherently complex and subjective.

Table 1: Latent space dimensions of Open-Sora video genera-
tion at various resolutions.

Resolution Aspect Ratio Height × Width Latent Dimensions

144p 0.56 144 × 256 # of frames × 18 × 32

240p 0.56 240 × 426 # of frames × 30 × 53

360p 0.56 360 × 640 # of frames × 45 × 80

480p 0.56 480 × 854 # of frames × 60 × 106

720p 0.56 720 × 1280 # of frames × 90 × 160

In Fig. 5 (a), we show that the carbon emissions per video gener-
ation increase proportionally with the number of denoising steps.
This is expected, as we demonstrated in RQ 3 that denoising domi-
nates the inference carbon footprint and each denoising step repeats
the same operations. However, when we examine video genera-
tion quality in Fig. 5, a different trend emerges. Video quality rises
steeply when the number of steps is initially increased to 60, then
begins to plateau, and even slightly declines as the number of steps
continues to increase. The video’s relevance to the input prompt, on
the other hand, shows an upward trend as the number of denoising
steps increases. In summary, increasing the number of denoising
steps enhances video quality up to a certain point before hitting a
plateau, while video relevance continues to improve. However, this
also results in a proportional increase in carbon emissions.

Insights and implications. Service providers should stan-
dardize video generation quality metrics to help determine the
appropriate number of denoising steps, balancing quality and
carbon emissions. Since video generation carbon is primarily
operational (RQ 1), the denoising procedure should be config-
ured differently based on varying carbon intensity periods. We
encourage diffusion model researchers to design carbon-aware
denoising schedulers to promote sustainable practices in video
generation applications.

In real-world scenarios, videos would need to have much higher
resolutions. We did not use higher-resolution examples to answer
previous RQs for ease of visualization; otherwise, the carbon foot-
print of text generation and encoding/decoding would become
invisible. Next, we investigate the scenario of video generation at
varying resolutions and durations.

RQ 5. How do video resolution and length affect the carbon
footprint of video generation?

The Colossal-AI Open-Sora model is trained with videos of vary-
ing resolutions and durations. When generating videos at different
resolutions and durations (number of frames), the latent space di-
mension changes accordingly, as shown in Table 1. Based on our
previous discussions, the carbon footprint of video generation is
dominated by the diffusion denoising process in the latent space.
Therefore, changes in the latent representation dimension signifi-
cantly impact the carbon footprint of video generation.

In Fig. 6, we show the carbon footprint per video generation
at various video resolutions, normalized to 240p videos. As video
height and width (pixels) scale, the dimensions of the latent space
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Figure 6: The carbon footprint of video generation scales
almost quadratically with video resolution.
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Figure 7: The carbon footprint scales linearly with generated
video duration.

representation also scale linearly with height and width, respec-
tively (Table 1), resulting in a quadratic increase in tensor size
because two dimensions scale linearly. The carbon emissions in
Fig. 6 follow a near-quadratic trend as video resolution scales, indi-
cating that generating videos at higher resolutions incurs signifi-
cantly higher carbon emissions. Notably, generating videos at 720p
produces 10× more carbon than at 240p.

In Fig. 7, we fix the resolution and adjust the video generation
duration from 2 seconds to 8 seconds, which is equivalent to in-
creasing from 16 frames to 64 frames at a frame rate of 8 frames per
second. As shown in Table 1, the latent space does not downscale
the number of frames in the representation. Similarly, as observed
in Fig. 7, the carbon footprint of video generation scales linearly
with video duration.

Insights and implications. Users’ generation requirements
(i.e., resolution and duration) heavily impact the carbon foot-
print, especially when higher-resolution videos are requested.
Service providers should guide users to conduct trials at lower
resolutions before generating videos at high resolutions. Ad-
ditionally, it’s a carbon-friendly practice to forward high-
resolution requests to datacenter regions with lower carbon
intensity and de-prioritize high-resolution and long video re-
quests during periods of high carbon intensity.

4 DISCUSSIONS
In Sec. 3, we quantified the carbon impact of video generation
applications using the latest Open-Sora model. Based on this char-
acterization and the insights gained, we offer some takeaways and
suggestions for video generation service providers to incorporate
more carbon-friendly practices.

Adaptive Generation Credit System. Service providers often
grant users a specific amount of generation credit and charge for
each generation (e.g., Adobe Firefly [2]). We suggest that service
providers implement a carbon-aware credit model to charge users

based on their carbon usage. Specifically: (i) Since generation car-
bon is primarily operational (RQ 1), the provider should offer users
generation discounts during periods of low carbon intensity. (ii)
Users can specify their desired video resolution and duration, while
the system should scale the generation credits accordingly to en-
courage carbon savings. Based on our characterizations in RQ 5,
providers should scale credits quadratically when users request
non-default video resolutions and linearly when they request non-
default video durations. (iii) Providers should conduct A/B tests to
study users’ preferences for different numbers of denoising steps
during generation and grant more credits to users who prefer a
lower number of denoising steps.

Online to Offline Generation. Video generation applications
typically require significantly more processing time for an online
inference request compared to text or image generation applica-
tions. For instance, using the Open-Sora model to generate an
8-second video at 480p resolution takes approximately 8 minutes
on an NVIDIA A100 Tensor Core GPU. Consequently, users gener-
ally do not expect video generation to respond as quickly as other
generative AI applications, such as chatbots.

Recognizing this difference from other online services, we rec-
ommend that video generation service providers encourage users
to convert their online processing requests to offline mode when
the grid’s carbon intensity is high. This approach is intuitive be-
cause users are unlikely to wait for extended periods for video
generation, especially when multiple video samples are created
from a single prompt for the user to select from. If users opt in, the
provider can defer generation until the carbon intensity decreases
or until the offline processing deadline, rewarding the user with
discounts or generation credits. This is similar to how Amazon
encourages customers to opt for longer delivery times to save trips
and packaging [4].

5 RELATEDWORK
Multiple studies have established carbon estimation models and
design insights for reducing the carbon footprint [1, 10, 12]. Fur-
thermore, carbon-aware design has extended to various computer
science areas, including machine learning [27, 30, 42], cloud and
supercomputing datacenters [5, 25, 39], and operating systems [21].
This effort has recently extended to generative AI [7, 11, 26, 29].
For example, LLMCarbon [11] introduces an end-to-end carbon
footprint projection for LLMs. However, current research lacks an
understanding of the carbon impacts of video generation, while
our study reveals that video frames are significantly more carbon-
intensive to generate than text tokens. Our work serves as a pioneer
in investigating the carbon emissions of video GenAI.

6 CONCLUSION
In this paper, we quantitatively analyze the carbon footprint of
video generation applications using the state-of-the-art Open-Sora
model. Our characterization reveals that video generation could
become the major carbon emission source in GenAI and proposes
several environmentally sustainable practices. We hope our insights
will help ML practitioners design more carbon-efficient video gen-
eration systems.
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