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Abstract
This paper represents the first effort to quantify uncertainty in car-
bon intensity forecasting for datacenter decarbonization. We iden-
tify and analyze two types of uncertainty—temporal and spatial—
and discuss their system implications. To address the temporal dy-
namics in quantifying uncertainty for carbon intensity forecasting,
we introduce a conformal prediction-based framework. Evaluation
results show that our technique robustly achieves target coverages
in uncertainty quantification across various significance levels. We
conduct two case studies using production power traces, focusing
on temporal and spatial load shifting respectively. The results show
that incorporating uncertainty into scheduling decisions can pre-
vent a 5% and 14% increase in carbon emissions, respectively. These
percentages translate to an absolute reduction of 2.1 and 10.4 tons
of carbon emissions in a 20 MW datacenter cluster.

CCS Concepts
• Social and professional topics → Sustainability; • Comput-
ing methodologies → Machine learning.
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1 Introduction
Recent years have witnessed an increasing emphasis on decarboniz-
ing datacenters, as datacenters accounted for 2.5–3.7% of global
carbon emissions in 2022 [7]. This trend is expected to grow due
to the escalating demand for computing power driven by machine
learning workloads [19].

In this paper, we focus on the Scope 2 carbon emissions [15],
which include the indirect carbon emissions associated with the
consumption of purchased electricity, steam, heating, and cooling
by a company or organization. Carbon emissions are a product
of the energy consumption and carbon intensity, where the car-
bon intensity is measured as grams of 𝐶𝑂2𝑒𝑞 emitted per 𝑘𝑊ℎ of
electricity generated or consumed [8].
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Building carbon-free datacenters depends on effective load sched-
uling, such as suspend-and-resume [1, 12, 18] and wait-and-scale [5,
16]. The core idea of these scheduling strategies is to adapt to re-
newable energy supplies based on carbon intensity forecasts. Inac-
curate carbon intensity forecasts can not only fail to reduce carbon
emissions but may even increase them [4]. While prior work has
introduced various methods for carbon intensity forecasting such
as ARIMA models [3] and neural networks [9, 10], they focus on
point-based estimation, neglecting to account for their uncertainty
levels. As prior studies point out, considering uncertainty is crucial
for effective scheduling [17]. In particular, higher uncertainty in
predictions prompts conservative load-shifting strategies, whereas
lower uncertainty enables more assertive approaches.

To bridge this gap, we tackle the problem of uncertainty quantifi-
cation of carbon intensity forecasting for datacenter decarboniza-
tion. We first identify and analyze two types of uncertainty in car-
bon intensity forecasting—temporal and spatial—and then illustrate
them using the real-world carbon intensity data (§2). To address the
temporal dynamics in quantifying uncertainty for carbon intensity
forecasting, we introduce a conformal prediction-based framework
(§3). Evaluation results show that our technique robustly achieves
target coverages in uncertainty quantification across various sig-
nificance levels (§4). We conduct two case studies, each focusing
on temporal and spatial load shifting. These case studies are based
on the suspend-and-resume scheduling policy [16, 18] and use the
Google production power trace data 1. We summarize our key find-
ings are as follows.
• There exist temporal (short-term and long-term) and spatial un-
certainty in carbon intensity forecasting.

• We demonstrate that even when the point prediction of carbon in-
tensity significantly deviates from the true value, our confidence
interval reliably covers the true value.

• The case studies on temporal and spatial load shifting demon-
strate that incorporating uncertainty into scheduling decisions
can prevent a 5% and 14% increase in carbon emissions, respec-
tively. Given a 20 MW cluster within a typical datacenter [13],
these percentages translate to an absolute reduction of 2.1 and
10.4 tons of carbon emissions.

2 Uncertainty in Decarbonization
Decarbonizing datacenters relies on accurate carbon intensity pre-
dictions. However, existing predictive tools often exhibit high varia-
tions in prediction accuracy, which pose difficulties in decarboniza-
tion efforts. These high variations lead to predictive uncertainty,
reducing confidence in the predictions and hindering effective
decision-making. In this section, we identify and analyze two types
of uncertainty in carbon intensity prediction: temporal and spatial.

1These case studies cannot quantify the potential benefits of considering prediction
uncertainty for real system implementations. We leave this for future work.
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Figure 1: Average 24-hour prediction accuracy from July to
December in 2022 across three regions. Thewhiskers indicate
standard deviations.
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Figure 2: Average 24-hour prediction accuracy for a represen-
tative week across three seasons in CISO.

Temporal uncertainty refers to the variability of carbon intensity
prediction over time. Spatial uncertainty refers to the variability
carbon intensity prediction across different geographical grids.

We apply a state-of-the-art carbon intensity prediction method,
CarbonCast [9], on real-world carbon intensity data. CarbonCast
uses historical energy sourcemix andweather data to predict hourly
carbon intensity for up to 96 hours into the future at one time.
We train CarbonCast on 2021 data, validate it on the first half of
2022, and evaluate its performance on the second half of 2022. We
compare three regions in the United States: CISO (California ISO),
ERCO (Electric Reliability Council of Texas), and ISNE (ISO New
England). We use the mean absolute percentage error (MAPE) as
the metric for predictability, where lower MAPE value indicates
higher prediction accuracy.

2.1 Temporal Uncertainty
We characterize temporal uncertainty in short-term and long-term,
respectively. CarbonCast predicts up to 24 hours for short-term
evaluation and up to 96 hours for long-term evaluation.

Short-term. Figure 1 shows the average 24-hour prediction ac-
curacy from July to December in 2022 across three regions. This
6-month period is divided into three seasons: summer (July and
August), fall (September and October), and winter (November and
December). We observe significant seasonal differences in predic-
tion accuracy for all regions, where the best-predicted seasons are
fall for CISO, summer for ERCO, and winter for ISNE.

For a finer granular analysis, Figure 2 shows the 24-hour pre-
diction accuracy for one representative week during each of the
three seasons in CISO in 2022, where the x-axis represents the day
of the week. We make two observations. First, different seasons
exhibit differences in prediction accuracy, with summer and fall
displaying 2.1× and 1.9× lower MAPEs than winter on average. Sec-
ond, prediction accuracy fluctuates across days, with summer and
fall displaying 3.7× and 3.2× lower variances than winter. These
results highlight the temporal variability of prediction accuracy
from CarbonCast.
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Figure 3: Average prediction accuracy in 4 temporal groups
from July to December in 2022 across three regions. The
whiskers indicate standard deviations.
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Figure 4: Average 24-hour prediction accuracy for November
2022 in three regions: CISO, ERCO, and ISNE.

Long-term. Besides short-term variations, we observe that pre-
diction accuracy decreases over time. To illustrate such long-term
impacts, we let CarbonCast predict 96 hours at one time, and then
temporally divide the 96 predictions into 4 groups (i.e., 24 predic-
tions in each group) to compare the prediction accuracy of each
group. Figure 3 shows the average 24-hour prediction accuracy of
each group from July to December in 2022 across three regions. For
all regions, prediction accuracy decreases over time. Specifically,
73–96h predictions have 1.8×, 1.2×, 1.6× higher MAPEs than 1–24h
for CISO, ERCO, and ISNE respectively. Furthermore, CISO’s pre-
diction accuracy is highly sensitive to the prediction horizon, while
ERCO’s is the least affected. This discrepancymay stem fromCISO’s
reliance on renewable energy sources like solar and wind, which
are sensitive to weather fluctuations. These results underscore the
limitations of CarbonCast’s long-term predictability.

System implications. Addressing temporal predictive uncer-
tainty in carbon-aware scheduling is critical. A flexible load-
shifting policy is essential, enabling dynamic adjustments over
time in response to changes in predictive variance. Moreover,
it is crucial to recognize that prediction accuracy diminishes
with longer horizons. This is especially critical for long-term job
scheduling, such as planning days in advance. Neglecting such
diminishing prediction accuracy risks higher carbon emissions.

2.2 Spatial Uncertainty
Figure 1 also highlights spatial uncertainty across three regions. It
is evident that each region exhibits varying prediction accuracy,
where ISNE shows, on average, 1.6× lower predictability (measured
in MAPE) than both CISO and ERCO.

For a finer granular analysis, Figure 4 compares the average
24-hour prediction accuracy in November 2022 across three re-
gions, where the x-axis represents the date. The results show that
different regions exhibit varying prediction accuracy, with ERCO
and ISNE exhibiting 1.5× and 1.6× lower MAPEs than CISO on
average. Moreover, prediction accuracy fluctuates over different
time periods, with ERCO and ISNE showing 3.2× and 6.4× lower
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variance than CISO. These results highlight the spatial variability
of prediction accuracy from CarbonCast.

System implications. Addressing spatial predictive uncertainty
in carbon-aware scheduling is critical. Suppose a long-running
workload has two datacenters for execution, A and B, that are
located in different regions. The carbon intensity is predicted to
be low in A at a low confidence, and high in B at a high confi-
dence. The uncertainty complicates the load migration policy, as
it requires assessing whether A’s low carbon intensity prediction
is robust enough to effectively reduce carbon emissions.

3 Uncertainty Quantification
In this section, we introduce a conformal prediction-based [14]
framework for quantifying uncertainty in carbon intensity predic-
tions made by arbitrary prediction algorithms. The fundamental
idea is to convert an algorithm’s point-based predictions into pre-
diction sets (or a range). Using any pre-trained model, our goal
is to generate prediction sets that are guaranteed to contain the
true carbon intensity with a user-specified probability. In particu-
lar, we train a conformal prediction-based model that starts with
CarbonCast to predict the range (also called confidence interval)
within which the true carbon intensity value is expected to fall,
relative to the CarbonCast’s predicted carbon intensity. Sometimes,
this model may determine that the CarbonCast prediction is highly
“non-conformal" and therefore provides a confidence interval that
is likely to include the true carbon intensity value, deviating signif-
icantly from the CarbonCast prediction.

The problem setup is as follows. Consider a sequence of observa-
tions (𝑥𝑡 , 𝑦𝑡 ), 𝑡 = 1, 2, ..., where 𝑥𝑡 ∈ R𝑑 denotes the features such as
energy production and weather, and 𝑦𝑡 represents the correspond-
ing true carbon intensity. Let the first 𝑇 observations {(𝑥𝑡 , 𝑦𝑡 )}𝑇𝑡=1
be the training data. Our goal is to construct the confidence in-
tervals 𝐶𝑡−1 (𝑥𝑡 ) 2 sequentially from 𝑇 + 1 such that 𝐶𝑡−1 (𝑥𝑡 ) will
contain the true carbon intensity values with a high probability
1 − 𝛼 while the confidence interval is as narrow as possible.

P
(
𝑦𝑡 ∈ 𝐶𝑡−1 (𝑥𝑡 )

)
≥ 1 − 𝛼,∀𝑡 . (1)

𝐶𝑡−1 (𝑥𝑡 ) depend on 𝛼 and point predictions 𝑦𝑡 := 𝑓 (𝑥𝑡 ), where 𝑓

is any predictive model (CarbonCast in this case).
We address this problem using conformal prediction. The key

ingredient of conformal prediction is the non-conformity scores,
which help us evaluate how “unusual" a new prediction is compared
to the predictions made from the calibration data 3. These scores
determine the distance between new predictions and the set of
previous observations, which were used as a reference. Essentially,
the more a new prediction deviates from the previous data, the
less “conformal" it is, resulting in a higher nonconformity score. A
commonly used nonconformity score is the prediction residual:

𝜖𝑡 = 𝑦𝑡 − 𝑦𝑡 . (2)

2The subscript 𝑡 − 1 indicates the interval is constructed using previous up to 𝑡 − 1
many observations.
3The calibration data, also the validation data in this context, is a subset extracted
from the training data and used to estimate the confidence levels of the predictions.

Algorithm 1 SPCI for Uncertainty Quantification

Input: { (𝑥𝑡 , 𝑦𝑡 ) }𝑇𝑡=1 ⊲ Training data
Input: A ⊲ Carbon intensity forecast algorithm (e.g., CarbonCast [9])
Input: 𝛼 ⊲ Significance level
Output: 𝐶𝑡−1 (𝑥𝑡 ), 𝑡 > 𝑇 ⊲ Confidence intervals
1: Obtain 𝑓 and residual set {𝜖 }𝑇

𝑡=1 with A and { (𝑥𝑡 , 𝑦𝑡 ) }𝑇𝑡=1.
2: for 𝑡 > 𝑇 do
3: Obtain𝐶𝑡−1 (𝑥𝑡 ) as in the SPCI algorithm [20].
4: Obtain new residual 𝜖𝑡 .
5: Add 𝜖𝑡 to the residual set and remove the oldest residual.
6: end for

Figure 5: The feedback mechanism (the red arrow), where
𝐶𝑡−1 (𝑥𝑡 ) is updated based on the residuals at each step.

We calculate the nonconformity scores on the calibration data, and
then sort them in a descending order to obtain a sorted residual
list E𝑇𝑡 . Then, the confidence interval with 1 − 𝛼 probability that
satisfies Equation (1) will be

[𝑦𝑡 + 𝑞𝛼/2 (E𝑇𝑡 ) , 𝑦𝑡 + 𝑞1−𝛼/2 (E𝑇𝑡 )], (3)

where 𝑞1−𝛼 is the 1 − 𝛼 quantile function over the set of sorted
residuals.

This is the procedure of conventional conformal prediction [14].
However, quantifying uncertainty for carbon intensity prediction is
more challenging due to the temporal dynamics in time-series data.
As more grids increasingly integrate renewable energy sources, the
distribution of carbon intensity will shift. Therefore, we want the
conformal prediction method to account for dependencies between
data points over time. To address this, we leverage the sequentially
predictive conformal interval (SPCI) algorithm [20]. The key steps
are outlined in Algorithm 1.

The novelty in the SPCI algorithm is the feedback mechanism
illustrated in Figure 5, which encodes temporal dependence infor-
mation in the prediction residuals. Specifically,𝐶𝑡−1 (𝑥𝑡 ) is updated
based on the updated residuals obtained at each step. Additionally,
instead of directly using empirical prediction residuals, SPCI trains
quantile random forest models autoregressively to predict the con-
ditional quantiles of future unobserved residuals to formulate the
residual list. This further accounts for the temporal dependencies
between data points over time.

4 Evaluation
We evaluate our approach from two aspects: uncertainty quantifi-
cation on real-world carbon intensity data and simulated carbon
emissions in case studies for temporal and spatial load shifting.

4.1 Uncertainty Quantification
Evaluation methodology. Same as §2, we examine three regions:
CISO, ERCO, and ISNE. We collect the historical energy source data
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Table 1: Coverage results for three regions over six months at three significance levels. The Coverage column in gray shade
shows the overall coverage results, indicating the proportion of SPCI’s confidence intervals (CIs) that cover the true values. We
further break down the results into two categories: CIs that cover true values (𝑇covered) and those that do not (𝑇uncovered). Within
each category, we also differentiate between CIs that cover CarbonCast predictions (𝑃covered) and those that do not (𝑃uncovered).

𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

𝑇covered 𝑇uncovered 𝑇covered 𝑇uncovered 𝑇covered 𝑇uncovered

Coverage 𝑃covered 𝑃uncovered 𝑃covered 𝑃uncovered Coverage 𝑃covered 𝑃uncovered 𝑃covered 𝑃uncovered Coverage 𝑃covered 𝑃uncovered 𝑃covered 𝑃uncovered

CISO 92.41 81.94 10.47 6.24 1.35 96.34 93.62 2.72 3.49 0.16 99.28 99.28 0 0.72 0
ERCO 92.02 70.44 21.58 4.7 3.28 96.02 76.75 19.27 2.28 1.7 99.09 91.62 7.47 0.77 0.14
ISNE 90.92 53.49 37.43 4.93 4.14 95.74 67.85 27.89 2.68 1.58 98.93 86.57 12.36 0.74 0.33
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Figure 6: Confidence intervals across one week for three regions at three significance levels 𝛼 = 0.1, 0.05, and 0.01. The light
blue shaded areas indicate the times when the true carbon intensity values are covered but CarbonCast predictions are not.

from EIA [2], the 96-hour weather forecasts data from NCEP GPS
ds084.1 [11], and day-ahead solar/wind forecasts for CISO from
OASIS [6]. All data are processed at hourly intervals. We compute
the average grid carbon intensity based on the weighted average
of carbon emitted by each source [9].

We apply our uncertainty quantification technique to a state-of-
the-art carbon intensity prediction tool CarbonCast [9]. We run
CarbonCast to get the hourly carbon intensity predictions. The Car-
bonCast predictions and the ground truth carbon intensity data are
then passed to the SPCI framework to obtain confidence intervals.
Both CarbonCast and SPCI train on 2021 data, validate/calibrate on
the first half of 2022, and test on the second half of 2022. We use
coverage to evaluate uncertainty quantification, which is the propor-
tion of times that an hourly point estimate’s predicted confidence
interval (CI) contains the true carbon intensity value. We focus
on three significance levels: 𝛼 =0.1, 0.05, or 0.01, corresponding to
targeted coverages of 90%, 95%, and 99%, respectively.

Results. Table 1 summarizes the coverage results, both aggre-
gated and breakdown, for three regions over six months at three
significance levels. The targeted coverage levels are met across all
regions, with the exception of ISNE at 𝛼 = 0.01, where the coverage
slightly falls short of the expected 99%. Notably, CISO consistently
exhibits higher coverage compared to ERCO and ISNE across var-
ious 𝛼 . This discrepancy can be attributed to two factors. Firstly,
CISO maintains a greater reliance on renewable energy produc-
tion than the other regions. Secondly, CISO enhances prediction
accuracy by incorporating additional solar and wind inputs. These
findings underscore the efficacy of our approach in quantifying
uncertainty for carbon intensity forecasting.

In Table 1, we further break down the coverage results into
two categories: CIs that cover true values (𝑇covered) and those that
do not (𝑇uncovered). In each category, we differentiate between CIs
that cover CarbonCast predictions (𝑃covered) and those that do not
(𝑃uncovered). We observe that when CIs cover the true values, they
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often also cover CarbonCast predictions. However, sometimes the
CIs cover only the true values and miss CarbonCast predictions.
This outcome aligns with our goal, which is to enhance the coverage
of true carbon intensity values, rather than the predictions.

To provide a detailed view of the coverage results, Figure 6
presents hourly true, CarbonCast predictions, SPCI’s confidence
intervals (CIs), and the midpoints (the points that lie in the middle
of the CI.) of the CIs at various significance levels, spanning a week.
Our observations are as follows.
• As 𝛼 increases, the fractions of points—groundtruth, CarbonCast
predictions, and CI midpoints—falling outside of the CIs decrease.
This is expected, as higher 𝛼 values result in wider CIs.

• Even when CarbonCast predictions deviate significantly from the
true values, such as ERCO’s 90% targeted CI on July 10th, 2022,
our CIs still cover the true values (indicated by the blue shaded
areas). This is evidenced by the fact that the midpoints of our CIs
are closer to the true values than the CarbonCast predictions.

• When CarbonCast predictions deviate significantly from the true
values, the CIs become wider (as seen with ERCO and ISNE
between July 10th and 11th). This is useful for decision-making,
as wider CIs indicate lower confidence levels and, consequently,
conservative scheduling decisions.

• CISO consistently exhibits higher coverage and narrower CIs
compared to ERCO and ISNE. This could be attributed to CISO’s
more consistent carbon intensity patterns from day to day, facili-
tating more accurate predictions.

4.2 Case Studies for Load Shifting
Evaluation methodology. We simulate load shifting using power
traces from Google production systems [13]. Specifically, we take
the power data from one cluster and apply it to different regions
and times for comparative studies. In our scenario, we assume
the workload is executed on a cluster with a peak power of 20
MW, based on actual power data from a Google production data
center trace. We then compare the reduction in carbon emissions by
accounting for the uncertainty of carbon intensities when making
load-shifting decisions. Because the power trace data are normalized
by Google, our simulated results are also presented as normalized
carbon emissions. We would like to clarify that the case studies in
this section serve as proof of concept to demonstrate two key points
for load shifting decision makers: (1) they should consider both
predicted carbon intensity values and their associated uncertainty
levels, and (2) they should shift load only when the confidence in
the predictions is sufficiently high. These case studies are not real
system implementations, which would be far more complex and
need to consider additional system-wide factors not addressed here.

We use the widely recognized and effective scheduling policy,
suspend-and-resume (also called WaitAWhile), for temporal and
spatial load shifting [16, 18]. The idea is to suspend work at times or
in regions with higher predicted carbon intensity and resume work
at times or in regions with lower predicted carbon intensity. Rather
than introducing a new scheduling algorithm, we apply the existing
suspend-and-resume scheduling algorithm to the prediction results
in our case studies. This scheduling algorithm serves our purpose
by demonstrating that effective load shifting should consider both
predictions and their associated uncertainty levels.

Table 2: Aggregated temporal shifting results over sixmonths
across three regions. Misleading Predictions represents the
proportion of days when the predicted carbon intensity for
the current day is lower than that of the next day, while in
reality, the opposite is true. Increased Emissions represent
the proportion of increased carbon emissions if shifting load
from the current day to the next day in those cases.

CISO ERCO ISNE

Misleading Predictions 16.8% 10.6% 13.4%
Increased Emissions 4.3% 6.6% 4.6%
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Figure 7: In temporal load shifting, predicted carbon emis-
sions are higher on Day 1 than on Day 2, but true emissions
show the opposite trend, with their confidence intervals
being roughly similar. Scheduling solely based on predic-
tions would result in a 5% increase in carbon emissions. The
high and low carbon emissions in prediction/groundtruth
are marked in red and green, respectively.

Table 3: True and predicted carbon emissions with 90% confi-
dence intervals per day for CISO. The results are normalized
based on the groundtruth value of Day 1.

Groundtruth Predicted Confidence Interval

Day 1 1.00 1.13 [0.83, 1.21]
Day 2 1.05 0.96 [0.84, 1.20]

Temporal load shifting. In simulating temporal load shifting,
we predict carbon intensity for two consecutive days.We then apply
power data to obtain their predicted and true carbon emissions.
Table 2 summarizes the aggregated results over six months across
three regions, which includes (1) the proportion of days when
the predicted carbon intensity for the current day is lower than
that of the next day, while in reality, the opposite is true; and (2)
the proportion of increased carbon emissions if shifting load from
the current day to the next day. Across all regions, 10.6–16.8% of
times show that the predicted carbon intensity for two consecutive
days exhibits an opposite trend compared to their true values. If
load shifting is performed based solely on these point predictions,
it could result in a 4.3–6.6% increase in carbon emissions. These
results indicate that making load-shifting decisions based solely
on point carbon intensity predictions is unreliable. Next, we will
illustrate how incorporating uncertainty levels of predictions can
inform better decision-making using a two-day simulation result.

Figure 7 shows the hourly normalized carbon emission results
for two days, while Table 3 summarizes the total carbon emission
results aggregated for each day. We can see that Day 2 shows lower
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Table 4: Aggregated spatial shifting results over six months
across three regions. Misleading Predictions represents the
proportion of days when the predicted carbon intensity for
the target region is lower than that of the source, while in
reality, the opposite is true. Increased Emissions represent
the proportion of increased carbon emissions if shifting load
from the source region to the target in those cases.

Source Target Misleading Predictions Increased Emissions

CISO ERCO 5.0% 3.1%
ISNE 7.8% 5.8%

ERCO CISO 2.2% 2.7%
ISNE 5.0% 3.5%

ISNE CISO 4.5% 4.3%
ERCO 2.8% 7.3%
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Figure 8: In spatial load shifting, predicted carbon emissions
are higher in ISNE than ERCO on the same day, but true
emissions show the opposite trend. ERCO’s confidence in-
tervals are much wider than ISNE’s. Scheduling solely based
on predictions would result in a 14% increase in carbon emis-
sions. The high and low carbon emissions in prediction/-
groundtruth are marked in red and green, respectively.

Table 5: True and predicted carbon emissions in a day with
90% confidence intervals for ERCO and ISNE. The results are
normalized based on ERCO’s groundtruth value.

Groundtruth Predicted Confidence Interval

ERCO 1.00 0.86 [0.86, 1.11]
ISNE 0.87 0.90 [0.83, 0.93]

predicted total carbon emissions than Day 1, yet significantly higher
true total carbon emissions than Day 1. If workload scheduling to
Day 2 is solely based on predicted carbon intensity and emissions, it
could result in a 5% increase in total carbon emissions. For a cluster
that has a 20 MW power in a datacenter [13], this increase can
lead to 2.1 tons of extra CO2e. However, considering the confidence
interval reveals that Day 2 and Day 1 have very similar confidence
intervals. Hence, scheduling to Day 2 does not guarantee clear
benefits over Day 1. This case study underscores the importance of
considering confidence intervals for effective temporal load shifting.

Spatial load shifting. In simulating spatial load shifting, we
predict carbon intensity for two regions—source (current region)
and target (potential region to shift)—on the same day. We then
apply power data to calculate their predicted and true carbon emis-
sions. Table 4 summarizes the aggregated results over six months,

with each case involving a source and target grid. Across all cases,
2.2–7.8% of times show that the predicted carbon intensity for two
regions exhibits an opposite trend compared to their true values. If
load shifting is performed based solely on point predictions, it could
result in a 2.7–7.3% increase in carbon emissions. These results in-
dicate that making load-shifting decisions based solely on point
predictions is unreliable. Next, we will illustrate how incorporating
uncertainty levels of predictions can inform better decision-making
using a two-region simulation result on a single day.

Figure 8 shows the hourly normalized carbon emission results for
spatial load shifting between ERCO and ISNE on the same day, while
Table 5 summarizes the total carbon emission results aggregated
over 24 hours. We can see that ERCO shows lower predicted total
carbon emissions than ISNE, yet significantly higher true total
carbon emissions than ISNE. If workload scheduling to ERCO is
solely based on a point estimation of carbon intensity, it could result
in a 14% increase in total carbon emissions. Like the previous case
study, given a 20 MW datacenter cluster [13], this increase means
an extra 10.4 tons of CO2e. However, considering the confidence
interval reveals ERCO’s wider confidence intervals, with its lower
bound not surpassing ISNE’s upper bound. Hence, scheduling to
ERCO does not guarantee clear benefits over ISNE. This case study
underscores the importance of considering confidence intervals for
effective spatial load shifting.

5 Conclusion
Decarbonizing datacenters demands accurate carbon intensity pre-
dictions and uncertainty levels. This study pioneers quantifying
such uncertainty and highlights its significance in carbon-aware
scheduling. Our evaluation of real-world carbon intensity and
power data demonstrates the effectiveness of our technique. We
hope this work can inspire system researchers to consider uncer-
tainty when designing future sustainable computing systems.
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