Towards Sustainable Large Language Model Serving

Sophia Nguyen*, Beihao Zhou*, Yi Ding, and Sihang Liu

Large Language Models (LLMs)

• Large language models (LLMs) are widely used

^{*} Images are generated by GPT-40

Large Language Models (LLMs)

- Large language models (LLMs) are widely used
- Inference of LLMs follow an auto-regressive pattern

LLM Environmental Impact – Operational

- LLMs are compute-intensive
- Serving LLMs causes high operational carbon emissions

20x more carbon emissions

LLM Environmental Impact – Embodied

- LLMs require high-end GPUs or ML accelerators
- Manufacturing these devices causes high embodied carbon emissions

Serving LLM has serious environmental impact

Overview

- Goal
 Understand the environmental impact of LLM serving by analyzing its performance and carbon emissions
- Approach
 - Characterize LLMs through low-level monitoring and profiling
 - Model both operational and embodied carbon emissions of LLMs

Carbon Modeling

• Carbon emissions of an LLM prompt C_{prompt} consists of operational $C_{prompt,op}$ and embodied $C_{prompt,em}$ carbon emissions

Total carbon emission of a prompt: $C_{prompt} = C_{prompt,op} + C_{prompt,em}$

Carbon Modeling – Operational

Total carbon emission of a prompt: $C_{prompt} = C_{prompt,op} + C_{prompt,em}$

- Operational carbon of a prompt $C_{prompt,op}$ depends on
 - Energy consumption E_{prompt} of the prompt
 - Carbon intensity CI of the area where the GPU is running

$$C_{prompt,op} = E_{prompt} \cdot CI$$

Carbon Intensities in This Study

Carbon intensities (CIs) are based on the average value in 2023

Carbon intensities differ across regions due to their energy sources

Carbon Modeling – Embodied

Total carbon emission of a prompt: $C_{prompt} = C_{prompt,op} + C_{prompt,em}$

- Operational carbon of a prompt $C_{prompt,op}$ depends on
 - Energy consumption E_{prompt} of the prompt
 - Carbon intensity CI of the area where the GPU is running

$$C_{prompt,op} = E_{prompt} \cdot CI$$

- Embodied carbon of a prompt depends on [4]
 - Embodied carbon of the GPU C_{em}
 - Prompt execution time t_{prompt}
 - GPU lifetime LT

$$C_{prompt,em} = t_{prompt} / LT \cdot C_{em}$$

Embodied Carbon Modeling

• Model embodied carbon C_{em} based on chip area and memory size [4]

GPUs in this study	RTX 6000 Ada	T4
Size	608.4 mm ²	545 mm ²
Technology Node	5 nm	12 nm
Memory Capacity	48 GB	16 GB
Thermal Design Power (TDP)	300 W	70 W
Year	2023	2018
Embodied Carbon	26.6 kg	10.3 kg

Carbon Emissions in Different Regions

Evaluate per-prompt carbon emissions of 1B-parameter LLaMA with prompts from Alpaca dataset

In regions with lower CI, embodied carbon is more significant, making older GPUs more beneficial

Performance vs. Carbon Emission

Evaluate prefill and decode stages of 1B-parameter LLaMA

Performance vs. Carbon Emission

- Evaluate prefill and decode stages of 1B-parameter LLaMA
- Calculate carbon emission based on carbon intensity of QC

RTX 6000 Ada is faster and has lower carbon emissions than T4, except when batch size is 1

Impact of Extending GPU Lifetime

High impact on low-CI regions

Extending GPU lifetime lowers embodied carbon emissions – particularly prominent in regions with lower carbon intensities

Takeaways

Region matters:

Older GPUs are overall less efficient but more beneficial in regions with lower carbon intensities

Workload matters:

Old, lower-tier GPUs may have lower carbon emissions in less compute-intensive scenarios

Lifetime matters:

Exploiting use cases of old, lower-tier GPUs can extend their lifetime, effectively reducing their embodied carbon emissions

Towards Sustainable Large Language Model Serving

Sophia Nguyen*, Beihao Zhou*, Yi Ding, and Sihang Liu

