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The Future of Data Center Sustainability
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Demand Response (DR)
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Regulation Service Reserves DR
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Assuring Quality of Service (QoS) for Jobs

QoS: “Are our jobs completing as quickly as
we’d like, most of the time?”

Job Type Examples:
Al Training Workload: takes a while, fine if it is slow
Search Query: takes not a lot of time, not fine if it is slow
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Method: The Adaptive QoS-Assurance (AQA) Framework

[Zhang et al., TSUSC ‘20]
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Cost:

- Are we violating QoS?

- Are we meeting ISO signal?
- Are we saving money?
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Problem: Data Center Simulation is Slow
Bid Optimization Scaling
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Solution: CONDOR Overview

ldea: Can we replace our slow simulator with a faster model?

Our model: CONDOR (Cost-Optimization Neural Network for
Data Center Operational Demand Response )
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Solution: Neural-Network Architecture
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Results: ML Model vs AQA Simulator

P (kW) R (kW) Execution Time | Norm. Cost % Violation
Method ) i : :
5 Simulator | Model | Simulator | Model | Simulator | Model | Model Simulator | Model
Workload Mix

W3 160.7 175.4 26.3 31.2 236 m 0911s | 1.171 12.5% 0%
W4 154.3 159.1 21.1 334 610 m 0.814s | 0.980 0% 0%
W5 154.4 147.3 23.5 26.4 531 m 0.790 s | 0.920 0% 0%
Wé6 175.1 166.8 31.5 29.4 613 m 0.828 s | 0.95 0% 0%
W7 159.5 171.6 23.9 29.9 547 m 0.841s | 1.119 0% 0%
W38 1394 155.1 14.3 17.7 591 m 0.822s | 1.191 0% 0%

Punchline: CONDOR is comparable to the discrete simulator
(average 5% cost penalty), but around 15,000 faster!
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Problem: Data Center Simulation is Slow
Bid Optimization Scaling
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Conc_IUSIon o { Without Demano Response
- DR is a promising avenue for data

centers to remain sustainable into
the Al future

Ewergg

Must meet remaining required power with
new carbown plants, or service failure

- We introduce a faster ML-based data
center DR method to replace I
simulations ] wWith Demand Res,PO,W,S@_ N

Time of Day

- Speedups enable previously
computationally intractable DR

Less service failures or need for new infrastructure

methods to be brought to real data /
centers Time of Day
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