
Learning a Data Center Model for Efficient Demand Response

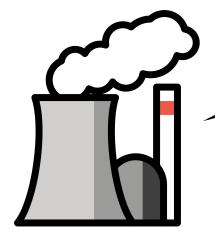
Quentin Clark, **Fatih Acun**, Ioannis Paschalidis, Ayse Coskun Boston University

July 9th, HotCarbon 2024, Santa Cruz CA

The Future of Data Center Sustainability

"Powering Intelligence: Analyzing Artificial Intelligence and Data Center Energy Consumption." Electric Power Research Institute (EPRI). 28 May 2024,

www.epri.com/research/products/3002028905



"AI, data centers and the coming US power demand surge". Davenport et al. for Goldman Sachs Group, Inc. 28 April 2024,

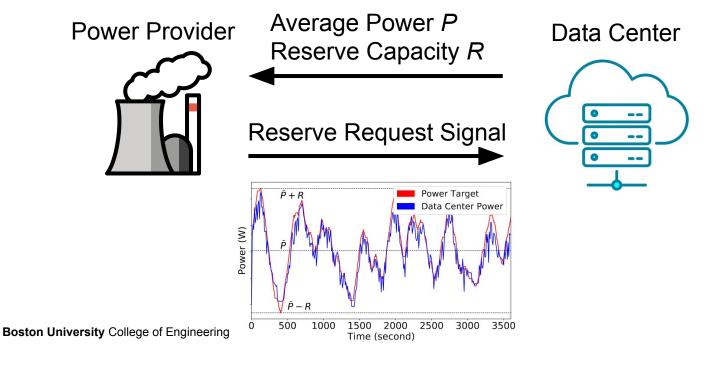
https://www.goldmansachs.com/intelligence/pages/gs-research/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf

Demand Response (DR)

Power Provider

We need you to use less power due to low supply.

We will find ways on our end to reduce demand.


Data Center

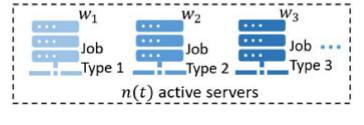
Boston University College of Engineering

Regulation Service Reserves DR

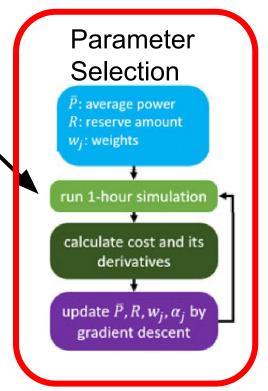
Assuring Quality of Service (QoS) for Jobs

QoS: "Are our jobs completing as <u>quickly</u> as we'd like, <u>most</u> of the time?"

Job Type Examples:

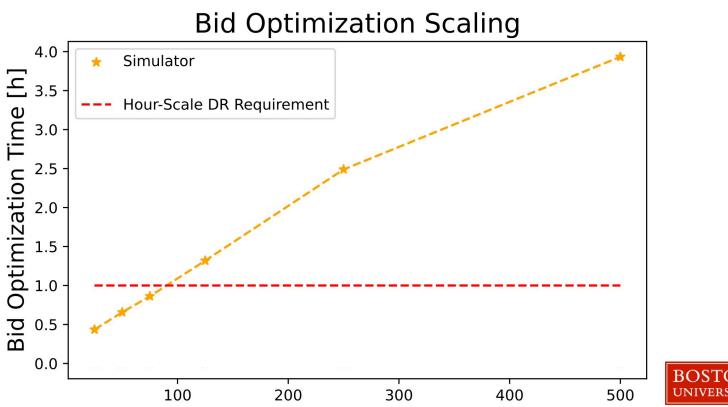

Al Training Workload: takes a while, fine if it is slow Search Query: takes not a lot of time, not fine if it is slow

Method: The Adaptive QoS-Assurance (AQA) Framework


[Zhang et al., TSUSC '20]

Cost:

- Are we violating QoS?
- Are we meeting ISO signal?
- Are we saving money?

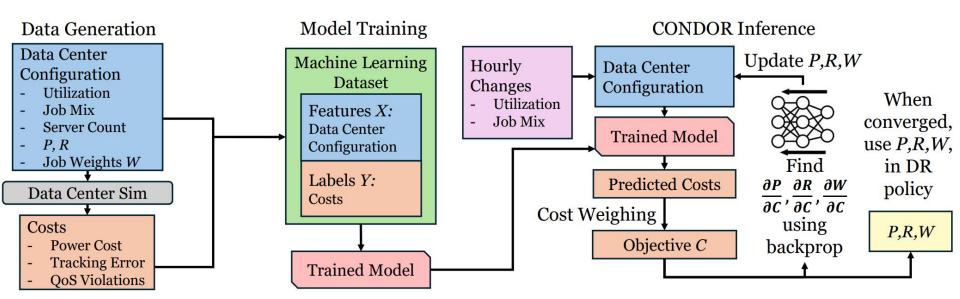


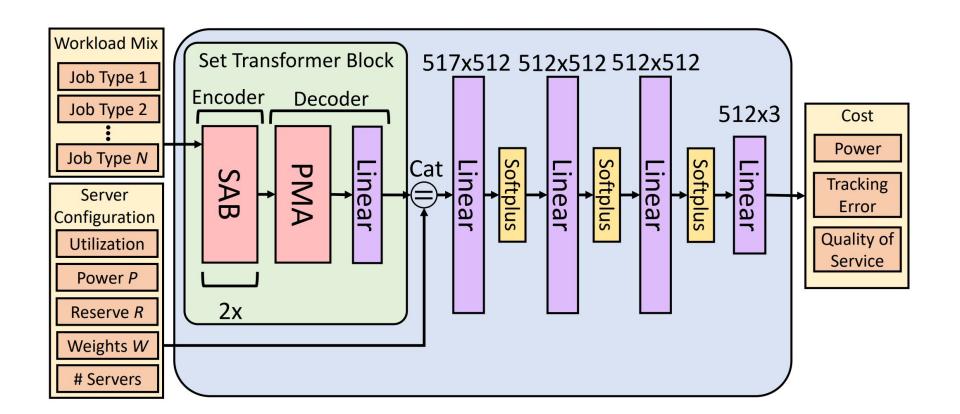
Runtime Policy When P_{target} rises/drops Increase/decrease the # of active servers n_{ij} Start waiting jobs Reduce CPU power

What we improve

Do Not Touch

Problem: Data Center Simulation is Slow


Server Count in Data Center Simulator

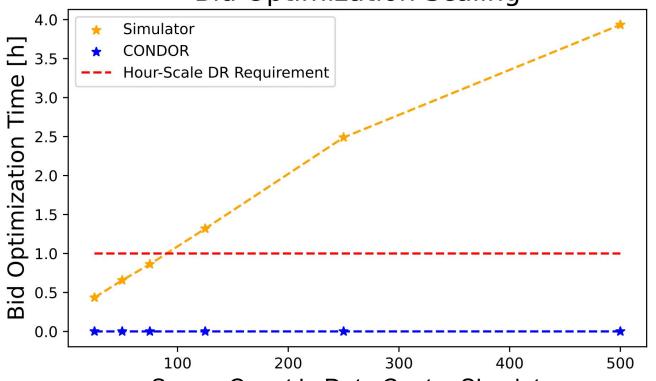

Solution: CONDOR Overview

Idea: Can we replace our slow simulator with a faster model?

Our model: CONDOR (Cost-Optimization Neural Network for Data Center Operational Demand Response)

Solution: Neural-Network Architecture

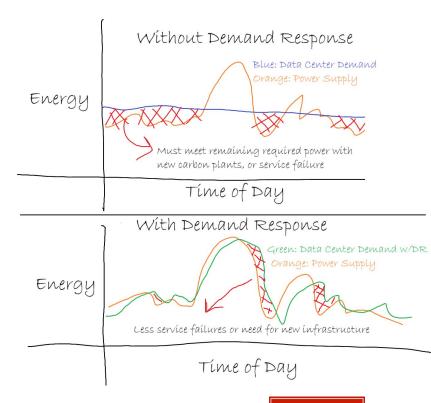
Results: ML Model vs AQA Simulator


	\bar{P} (kW)		R (kW)		Execution Time		Norm. Cost	% Violation	
Method Workload Mix	Simulator	Model	Simulator	Model	Simulator	Model	Model	Simulator	Model
W3	160.7	175.4	26.3	31.2	236 m	0.911 s	1.171	12.5%	0%
W4	154.3	159.1	21.1	33.4	610 m	0.814 s	0.980	0%	0%
W5	154.4	147.3	23.5	26.4	531 m	0.790 s	0.920	0%	0%
W6	175.1	166.8	31.5	29.4	613 m	0.828 s	0.95	0%	0%
W7	159.5	171.6	23.9	29.9	547 m	0.841 s	1.119	0%	0%
W8	139.4	155.1	14.3	17.7	591 m	0.822 s	1.191	0%	0%

Punchline: CONDOR is comparable to the discrete simulator (average 5% cost penalty), but around 15,000 faster!

Problem: Data Center Simulation is Slow

Bid Optimization Scaling



Server Count in Data Center Simulator

Conclusion

- DR is a promising avenue for data centers to remain sustainable into the Al future
- We introduce a faster ML-based data center DR method to replace simulations
- Speedups enable previously computationally intractable DR methods to be brought to real data centers

Boston University College of Engineering

Fatih Acun acun@bu.edu

References

- https://www.epri.com/research/products/3002028905
- https://www.goldmansachs.com/intelligence/pages/gs-research/generational-growth-ai-data -centers-and-the-coming-us-power-surge/report.pdf
- Y. Zhang, D. C. Wilson, I. C. Paschalidis and A. K. Coskun, "HPC Data Center Participation in Demand Response: An Adaptive Policy With QoS Assurance," in *IEEE Transactions on Sustainable Computing*, vol. 7, no. 1, pp. 157-171, 1 Jan.-March 2022, doi: 10.1109/TSUSC.2021.3077254.

