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Why Datacenter

Decarbonization?
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Global cloud computing emissions exceed

those from commercial aviation

Share of global CO, emission generated by sector/category

4%

3.7%
3%
2.5%
2%
) I
0%
Data Centres  Awviation Shipping Rice Tobacco &

Cultivation Food
Processing

ve/te/L



Load Shifting

DATA CENTERS AND INFRASTRUCTURE

Our data centers now work harder
when the sun shines and wind blows

Apr 22,2020 - 3 minread

0 Ana Radovanovic < Share

Technical Lead for Carbon-Intelligent Computing

https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-
shines-wind-blows/
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(Average) Carbon Intensity

Definition: grams of CO,eq emitted per kWh of electricity generated.

Existing point prediction methods: ARIMA 1, Neural Networks %3

What about their uncertainty levels?

1. Neeraj DhanrajBokde, Bo Tranberg, and Gorm Bruun Andresen. Short-term co2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling.
Applied Energy, 2021.

2. Diptyaroop Maji, Ramesh K Sitaraman, and Prashant Shenoy. Dacf: day-ahead carbon intensity forecasting of power grids using machine learning. E Energy, 2022.

3. Maiji, Diptyaroop, Prashant Shenoy, and Ramesh K. Sitaraman. CarbonCast: multi-day forecasting of grid carbon intensity. BuildSys. 2022.
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This Work: Uncertainty Quantification

* |dentify and characterize two types of uncertainty

* Temporal and spatial uncertainty in carbon intensity prediction

* Present an uncertainty quantification method

* A conformal prediction-based framework

* Provide case studies using real-world production power traces in

Scope 2
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Uncertainty in Carbon Intensity Prediction
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Characterization Setup

* Prediction tool: Pre-trained CarbonCast! model
* Test period: June — December 2022

* Regions: CISO (California), ERCO (Texas), and ISNE (New England)

1. Maji, Diptyaroop, Prashant Shenoy, and Ramesh K. Sitaraman. CarbonCast: multi-day forecasting of grid carbon intensity. BuildSys, 2022.
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Temporal Uncertainty: Short- & Long-term

Short-term (24h prediction accuracy)
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Addressing temporal uncertainty in carbon-aware scheduling is
critical, especially for long-term job planning.
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Spatial Uncertainty
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Suppose two datacenters, A and B, locate in different regions. The
carbon intensity is predicted to be low in A at a low confidence, and

high in B at a high confidence. What should we do?
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Uncertainty Quantification



A Conformal Prediction-based Framework

Goal: generate confidence intervals that are guaranteed to contain the
true carbon intensity with a user-specified probability

ldea: convert any algorithm’s point predictions into prediction sets

;T / Conformal
/ Input: / Prediction-based CP
l/ {(x¢, yt)}’{;lll carbonCast Conversion (CarbonCast)
_____ e '_________—_T____/
// Outputfort > T : // // Outputfort > T : |
/ yt / / P (yt (S Ct—l(xt)) > 1—«a /
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More Highlights on CP-based Framework

* The CP model may determine that the CarbonCast predictionis
highly “non-conformal” and CP will provide a confidence interval
that includes the true value but not the CarbonCast prediction.

* To account for the temporal dynamics, we leverage a feedback
mechanism to encode the dependencies between time series.
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Evaluation 1: Uncertainty Quantification
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Main Results
OCISO OERCO OISNE
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These results highlight the efficacy of our approach in

quantifying uncertainty for carbon intensity prediction.
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Evaluation 2: Case Studies on Load Shifting
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Evaluation Methodology

» Simulation data: Google production power traces’

* Load shifting policy: suspend-and-resume? (also called WaitAWhile)

* suspend the work at higher carbon intensity; resume the work at
lower carbon intensity.

e Clarification: case studies are only for proof-of-concepts, and
cannot demonstrate real system benefits.

. Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li, Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy, Christopher Malone, Jimmy
Clidaras, and Parthasarathy Ranganathan. Data center power oversubscription with a medium voltage power plane and priority-aware capping. ASPLOS, 2020.
. Wiesner, Philipp, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz Thamsen. Let's wait awhile: how temporal workload shifting can reduce carbon emissions in

the cloud. Middleware, 2021.
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Temporal Load Shifting

CISO ERCO ISNE
Misleading Predictions | 16.8% 10.6% 13.4%
Increased Emissions (4.3% 6.6% 4.6%

Misleading Predictions: proportion of days when the predicted carbon intensity for the
current day is lower than that of the next day, while in reality, the opposite is true.
Increased Emissions: proportion of increased carbon emissions if shifting load from the

current day to the next day in those cases.
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Temporal Load Shifting: A 2-Day Example

Groudtruth Predicted Confidence Interval

Predicted High Actually High

1SSIONS

3/kWh)
o
o

Decision makers should: (1) consider both predicted carbon
Intensity values and their uncertainty levels, and (2) shift load only
when the confidence is sufficiently high.

Groundtruth Predicted Confidence Interval
Day 1 1.00 [0.83, 1.21]
Day 2 0.96 [0.84, 1.20]
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Spatial Load Shifting

7122/24

Source Target Misleading Increased
Predictions |Emissions
CISO ERCO 5.0% 3.1%
ISNE 7.8% 5.8%
ERCO CISO 2.2% 2.7%
ISNE 5.0% 3.5%
ISNE CISO 4.5% 4.3%
ERCO 2.8% 7.3%

21



Spatial Load Shifting: A 2-Region Example

— Groudtruth —— Predicted Confidence Interval
N —~
<
E X Predicted High .
c () ™ ~\
o ; ’—’ -~
_e 8_ 150_ 1 \—- ”
S Predicted Low Actually Low
0 12 24 0 12 24
Hour in July 4, 2022 (ERCO) Hour in July 4, 2022 (ISNE)
Groundtruth | Predicted Confidence Interval
ERCO 1.00 0.86 [0.86, 1.11]
ISNE 0.87 0.90 [0.83, 0.93]
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v Yi Ding - You
‘ Assistant Professor of ECE at Purdue University
* 3w - Edited - ®
% Exciting News! Applications for NSF Workshop on Sustainable Computing are
Now Open! #

This is your chance to be a part of an incredible sustainable computing
community where academia and industry leaders will share insights on Al, water
scarcity, and biodiversity.

~, Event Date: Aug 20-21, 2024

? Location: Purdue University, West Lafayette, IN

& Apply Here: https://Inkd.in/gPqbpByz

= Dates: Apply before July 19, 2024. Acceptance notification by July 22, 2024.
® Travel Support: U.S. participants with accepted submissions will be awarded
a travel grant of up to $750.

Why Attend?

Network with academia and industry leaders and peers.

Extend sustainability metrics beyond carbon to include water and
biodiversity.

Address both positive and negative impacts of Al on these outcomes. .



https://nsf-desc-2024.github.io/

NSE Workshop on Sustainable Computing
" AT, Water, and Biodiversity

o R, August 20-21, 2024

. Purdue University, West Lafayette, IN

- . 5 e '-4%94,;- -
aDUE UNIVE] ~
= SUT 7 {SITY

7/22/24 24


https://nsf-desc-2024.github.io/

MAPE
cocoooo

MAPE
coocooo

0.20
o 0.151
Lo10

0.05

100
98
96
94
92
90
88
86
84

Actual Coverage (%)

.20

OO
Suouwum

OOFKFENN
ouitoutou

Hour in July 9-10, 2022 (CISO)

1 Summer
1 Fall
r . i< T T T T / Conformal
cI50 Rggico?\s SNE ; Input: / CarbonCast Prediction-based CP
T arbonCas -
I {(xe, ye)}rey ! Conversion (CarbonCast)
[ 1-24h [ T /
[ 25-48h l_ l
B 49-72h —_———— | m———— e e — =
B 73-96h / / / Outputfort > T : /
 Outputfor¢>T: / P - /
CISO ERCO ISNE / S / ( = ) >1— /
Regions / Yt J/ h P(y: € Cio1(x) ) 21— a /
CISO
—— ERCO
—— ISNE
. ; . . . . ; ; ~=—-—— Groudtruth = =-=~= Predicted Confidence Interval
01 05 09 13 17 21 25 29 -
Date (Nov 2022) 5 § .
_8%200_ Actually High ]
5% Predicted High
OCISO OERCO OISNE §§150_\ ). BN I h a n kS '
— Q -—
99.28 99.09 98.93 32 Predicted Low Actually Low ®
06,94 0 12 24 0 12 24
7 96.02 95.75 Hour in July 4, 2022 (ERCO)  Hour in July 4, 2022 (ISNE)
[ J
92.41 g5 o2 ———— Groudtruth - = — = Predicted Confidence Interval e St I O n S >
90.02 g g 150- _Predioted High Actually High u °
323 <N
5 X100
5 % Actually Low Predicted Low /
€3 50
90% 95% 99% S Day 1 Day 2
0 12 24 36 48
2/92/94 Target Coverage

25



